The effect of irradiance and integration time in in vivo normal skin Raman measurements assessed by multivariate statistical analysis

IF 0.3 Q4 SPECTROSCOPY Biomedical Spectroscopy and Imaging Pub Date : 2016-01-01 DOI:10.3233/BSI-160140
A. Elka, Violetta Moulia, P. Spyridonos, N. Kourkoumelis
{"title":"The effect of irradiance and integration time in in vivo normal skin Raman measurements assessed by multivariate statistical analysis","authors":"A. Elka, Violetta Moulia, P. Spyridonos, N. Kourkoumelis","doi":"10.3233/BSI-160140","DOIUrl":null,"url":null,"abstract":"BACKGROUND: The successful discrimination of the subtle spectral characteristics of human skin in Raman spectra requires optimal acquisition parameters. We explore the translational momentum of Raman spectroscopy towards clinical practice by fine-tuning two basic experimental parameters (irradiance and integration time) of a portable Raman system used in skin measurements. OBJECTIVE: The aim of this study is to construct a generic protocol for recording the optimal Raman signal for in vivo skin measurements. METHODS: In vivo spectra were collected from two individuals of normal Fitzpatrick type III skin type. We assessed two different irradiation setups with three different integration times each by separating the raw signal from the noise using multivariate analysis. RESULTS: Our results showed that under a time threshold no optimal measurement conditions can be achieved. On the other hand, increased laser power and acquisition time do not offer a significant advantage over the selected lower values. Baseline correction is the most critical component for analysing normalized skin Raman spectra. CONCLUSIONS: A simple working protocol based on multivariate statistics offers the relative adjustment of irradiance and signal integration time among other experimental parameters that must be examined for optimal Raman measurements of skin.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/BSI-160140","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/BSI-160140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 2

Abstract

BACKGROUND: The successful discrimination of the subtle spectral characteristics of human skin in Raman spectra requires optimal acquisition parameters. We explore the translational momentum of Raman spectroscopy towards clinical practice by fine-tuning two basic experimental parameters (irradiance and integration time) of a portable Raman system used in skin measurements. OBJECTIVE: The aim of this study is to construct a generic protocol for recording the optimal Raman signal for in vivo skin measurements. METHODS: In vivo spectra were collected from two individuals of normal Fitzpatrick type III skin type. We assessed two different irradiation setups with three different integration times each by separating the raw signal from the noise using multivariate analysis. RESULTS: Our results showed that under a time threshold no optimal measurement conditions can be achieved. On the other hand, increased laser power and acquisition time do not offer a significant advantage over the selected lower values. Baseline correction is the most critical component for analysing normalized skin Raman spectra. CONCLUSIONS: A simple working protocol based on multivariate statistics offers the relative adjustment of irradiance and signal integration time among other experimental parameters that must be examined for optimal Raman measurements of skin.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多元统计分析评估辐照度和积分时间对体内正常皮肤拉曼测量的影响
背景:在拉曼光谱中成功识别人体皮肤细微的光谱特征需要优化的采集参数。我们通过微调用于皮肤测量的便携式拉曼系统的两个基本实验参数(辐照度和积分时间)来探索拉曼光谱在临床实践中的平移动量。目的:本研究的目的是构建一种用于记录体内皮肤测量的最佳拉曼信号的通用方案。方法:采集2例正常Fitzpatrick III型皮肤的体内光谱。我们通过使用多变量分析将原始信号与噪声分离,评估了两种不同的辐照设置和三种不同的积分时间。结果:在一定的时间阈值下,不存在最优的测量条件。另一方面,增加的激光功率和采集时间并不比选择的较低的值提供显著的优势。基线校正是分析归一化皮肤拉曼光谱最关键的组成部分。结论:基于多元统计的简单工作方案提供了辐照度和信号整合时间等实验参数的相对调整,这些参数必须用于皮肤的最佳拉曼测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.
期刊最新文献
Covid-19 pandemic has been a set-back for scientific productivity and the road to recovery must focus on improving the mental health and well-being of scientists Portable NMR for the investigation of models of mammographic density ex vivo: Androgens antagonise the promotional effect of oestrogen A method to detect thermal damage in bovine liver utilising diffuse reflectance spectroscopy Clinical applications of spectroscopic techniques in conjunction with multivariate analysis in virus diagnosis Determination of arsenic, cadmium, selenium, zinc and other trace elements in Bangladeshi fish and arsenic speciation study of Hilsa fish flesh and eggs: Implications for dietary intake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1