{"title":"A review of applications of Raman spectroscopy in immunology","authors":"N. Chaudhary, Claire Wynne, A. Meade","doi":"10.3233/bsi-200198","DOIUrl":null,"url":null,"abstract":"Vibrational spectroscopic techniques have recently gained increasing clinical importance as non-invasive, rapid and inexpensive methods to obtain information on the content of biological samples. For some time Raman spectroscopy has been involved in preclinical applications, mainly in the cancer space, with evolving applications towards new horizons in the dermatology and companion diagnostics arena. It is attractive as an analytical technique due to its exquisite sensitivity, labelfree operation and low water detectivity such that in-vivo applications are possible. In cytometry, Raman spectroscopy has been applied to the analysis of single cells providing a label-free alternative to cell classification approaches in the laboratory. In this review we collate in-vitro, ex-vivo and in-vivo examples of research using Raman spectroscopy for the detection, quantification and analysis of immune signaling at the cellular level. While cancer biology has recently focussed on the role of immunological signals in the development of the disease, it is timely to examine these applications as research in this space evolves.","PeriodicalId":44239,"journal":{"name":"Biomedical Spectroscopy and Imaging","volume":"9 1","pages":"23-31"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/bsi-200198","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Spectroscopy and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/bsi-200198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 4
Abstract
Vibrational spectroscopic techniques have recently gained increasing clinical importance as non-invasive, rapid and inexpensive methods to obtain information on the content of biological samples. For some time Raman spectroscopy has been involved in preclinical applications, mainly in the cancer space, with evolving applications towards new horizons in the dermatology and companion diagnostics arena. It is attractive as an analytical technique due to its exquisite sensitivity, labelfree operation and low water detectivity such that in-vivo applications are possible. In cytometry, Raman spectroscopy has been applied to the analysis of single cells providing a label-free alternative to cell classification approaches in the laboratory. In this review we collate in-vitro, ex-vivo and in-vivo examples of research using Raman spectroscopy for the detection, quantification and analysis of immune signaling at the cellular level. While cancer biology has recently focussed on the role of immunological signals in the development of the disease, it is timely to examine these applications as research in this space evolves.
期刊介绍:
Biomedical Spectroscopy and Imaging (BSI) is a multidisciplinary journal devoted to the timely publication of basic and applied research that uses spectroscopic and imaging techniques in different areas of life science including biology, biochemistry, biotechnology, bionanotechnology, environmental science, food science, pharmaceutical science, physiology and medicine. Scientists are encouraged to submit their work for publication in the form of original articles, brief communications, rapid communications, reviews and mini-reviews. Techniques covered include, but are not limited, to the following: • Vibrational Spectroscopy (Infrared, Raman, Teraherz) • Circular Dichroism Spectroscopy • Magnetic Resonance Spectroscopy (NMR, ESR) • UV-vis Spectroscopy • Mössbauer Spectroscopy • X-ray Spectroscopy (Absorption, Emission, Photoelectron, Fluorescence) • Neutron Spectroscopy • Mass Spectroscopy • Fluorescence Spectroscopy • X-ray and Neutron Scattering • Differential Scanning Calorimetry • Atomic Force Microscopy • Surface Plasmon Resonance • Magnetic Resonance Imaging • X-ray Imaging • Electron Imaging • Neutron Imaging • Raman Imaging • Infrared Imaging • Terahertz Imaging • Fluorescence Imaging • Near-infrared spectroscopy.