Anastasios Alexiadis, Angeliki Veliskaki, Alexandros Nizamis, A. Bintoudi, L. Zyglakis, Andreas K Triantafyllidis, Ioannis Koskinas, D. Ioannidis, K. Votis, D. Tzovaras
{"title":"A smarthome conversational agent performing implicit demand-response application planning","authors":"Anastasios Alexiadis, Angeliki Veliskaki, Alexandros Nizamis, A. Bintoudi, L. Zyglakis, Andreas K Triantafyllidis, Ioannis Koskinas, D. Ioannidis, K. Votis, D. Tzovaras","doi":"10.3233/ica-210669","DOIUrl":null,"url":null,"abstract":"In recent years, the growing use of Intelligent Personal Agents in different human activities and in various domains led the corresponding research to focus on the design and development of agents that are not limited to interaction with humans and execution of simple tasks. The latest research efforts have introduced Intelligent Personal Agents that utilize Natural Language Understanding (NLU) modules and Machine Learning (ML) techniques in order to have complex dialogues with humans, execute complex plans of actions and effectively control smart devices. To this aim, this article introduces the second generation of the CERTH Intelligent Personal Agent (CIPA) which is based on the RASA framework and utilizes two machine learning models for NLU and dialogue flow classification. CIPA-Generation B provides a dialogue-story generator that is based on the idea of adjacency pairs and multiple intents, that are classifying complex sentences consisting of two users’ intents into two automatic operations. More importantly, the agent can form a plan of actions for implicit Demand-Response and execute it, based on the user’s request and by utilizing AI Planning methods. The introduced CIPA-Generation B has been deployed and tested in a real-world scenario at Centre’s of Research & Technology Hellas (CERTH) nZEB SmartHome in two different domains, energy and health, for multiple intent recognition and dialogue handling. Furthermore, in the energy domain, a scenario that demonstrates how the agent solves an implicit Demand-Response problem has been applied and evaluated. An experimental study with 36 participants further illustrates the usefulness and acceptance of the developed conversational agent-based system.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"29 1","pages":"43-61"},"PeriodicalIF":5.8000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-210669","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
In recent years, the growing use of Intelligent Personal Agents in different human activities and in various domains led the corresponding research to focus on the design and development of agents that are not limited to interaction with humans and execution of simple tasks. The latest research efforts have introduced Intelligent Personal Agents that utilize Natural Language Understanding (NLU) modules and Machine Learning (ML) techniques in order to have complex dialogues with humans, execute complex plans of actions and effectively control smart devices. To this aim, this article introduces the second generation of the CERTH Intelligent Personal Agent (CIPA) which is based on the RASA framework and utilizes two machine learning models for NLU and dialogue flow classification. CIPA-Generation B provides a dialogue-story generator that is based on the idea of adjacency pairs and multiple intents, that are classifying complex sentences consisting of two users’ intents into two automatic operations. More importantly, the agent can form a plan of actions for implicit Demand-Response and execute it, based on the user’s request and by utilizing AI Planning methods. The introduced CIPA-Generation B has been deployed and tested in a real-world scenario at Centre’s of Research & Technology Hellas (CERTH) nZEB SmartHome in two different domains, energy and health, for multiple intent recognition and dialogue handling. Furthermore, in the energy domain, a scenario that demonstrates how the agent solves an implicit Demand-Response problem has been applied and evaluated. An experimental study with 36 participants further illustrates the usefulness and acceptance of the developed conversational agent-based system.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.