Wideband optical frequency comb generation using a fiber re-circulating loop cascaded with a spectrum expander including highly nonlinear fiber

IF 0.7 4区 物理与天体物理 Q4 OPTICS Optica Applicata Pub Date : 2021-01-01 DOI:10.37190/oa210203
F. Wang, W. Kang
{"title":"Wideband optical frequency comb generation using a fiber re-circulating loop cascaded with a spectrum expander including highly nonlinear fiber","authors":"F. Wang, W. Kang","doi":"10.37190/oa210203","DOIUrl":null,"url":null,"abstract":"A wideband optical frequency comb (OFC) generator using a fiber re-circulating loop (FRL) including a phase modulator and optical amplifier, cascaded with a spectrum expander containing a high-power erbium-doped fiber amplifier and highly nonlinear fiber (HNLF) is proposed and experimentally demonstrated, in which the FRL is used as a source to generate seed comb lines, and then generated seed comb lines are extended to a wideband optical frequency comb using cascaded four-wave mixing in the HNLF. Only using one stage spectrum expander, a stable 20-GHz optical comb with 201 comb lines within 30-dB power deviation, spanning 40-nm bandwidth, is achieved. The results show that the HNLF has unique ability to broaden output spectrum from the FRL. In addition, an optical frequency comb is dramatically broadened, which may be predicted by optimizing gain and dispersion of the FRL or configuration of the spectrum expander, or both.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa210203","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1

Abstract

A wideband optical frequency comb (OFC) generator using a fiber re-circulating loop (FRL) including a phase modulator and optical amplifier, cascaded with a spectrum expander containing a high-power erbium-doped fiber amplifier and highly nonlinear fiber (HNLF) is proposed and experimentally demonstrated, in which the FRL is used as a source to generate seed comb lines, and then generated seed comb lines are extended to a wideband optical frequency comb using cascaded four-wave mixing in the HNLF. Only using one stage spectrum expander, a stable 20-GHz optical comb with 201 comb lines within 30-dB power deviation, spanning 40-nm bandwidth, is achieved. The results show that the HNLF has unique ability to broaden output spectrum from the FRL. In addition, an optical frequency comb is dramatically broadened, which may be predicted by optimizing gain and dispersion of the FRL or configuration of the spectrum expander, or both.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光纤再循环环路与包含高度非线性光纤的频谱扩展器级联产生宽带光频梳
提出了一种宽带光频梳(OFC)发生器,该发生器采用光纤再循环环路(FRL),其中包括相位调制器和光放大器,级联频谱扩展器包含高功率掺铒光纤放大器和高度非线性光纤(HNLF),其中FRL作为源产生种子梳线。然后利用级联四波混频将生成的种子梳线扩展为宽带光学频率梳。仅使用一级频谱扩展器,就实现了一个稳定的20 ghz光梳,具有201条梳线,功率偏差在30 db以内,跨越40 nm带宽。结果表明,HNLF具有独特的扩宽频响信号输出频谱的能力。此外,光频率梳被显著地展宽,这可以通过优化频域滤波器的增益和色散或频谱扩展器的配置来预测,或者两者兼而有之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optica Applicata
Optica Applicata 物理-光学
CiteScore
1.00
自引率
16.70%
发文量
21
审稿时长
4 months
期刊介绍: Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.
期刊最新文献
The influence of solvents on the appearance of the absorption bands of the polystyrene films deposited from solutions on metal mirrors In-fiber Mach–Zehnder interferometer based on polarization-maintaining fiber for displacement and temperature sensing Average capacity analysis of FSO system with Airy beam as carrier over exponentiated Weibull channels Infrared and visible image fusion with deep wavelet-dense network Manipulating far-field ring-shaped array according to the superposition of weight functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1