{"title":"Fringe pattern inpainting based on dual-exposure fused fringe guiding CNN denoiser prior","authors":"Peng Guangze, Chen Wenjing","doi":"10.37190/oa220203","DOIUrl":null,"url":null,"abstract":"The intensity of some pixels of the captured fringe will be saturated when fringe projection profilometry is used to measure objects with high reflectivity, which will significantly affect the reconstruction of the measured object. In this paper, we propose a fringe pattern inpainting method based on the convolutional neural network (CNN) denoiser prior guided by additional information from a fringe captured in short exposure time. First, a binary mask obtained by Otsu algorithm from the modulation information of the short exposure fringe is used to detect the high-saturation region in the normal exposure fringe. Then, the corrected gray-scales of the region of the short exposure fringe selected by the mask are inserted in the saturated region of the normal fringe to form an initial fringe for iteration. At last, fringe pattern inpainting is achieved by using a CNN denoiser prior. The correct phase can be reconstructed from the inpainted fringes. The computer simulation and experiments verify the effectiveness of the proposed method.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220203","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The intensity of some pixels of the captured fringe will be saturated when fringe projection profilometry is used to measure objects with high reflectivity, which will significantly affect the reconstruction of the measured object. In this paper, we propose a fringe pattern inpainting method based on the convolutional neural network (CNN) denoiser prior guided by additional information from a fringe captured in short exposure time. First, a binary mask obtained by Otsu algorithm from the modulation information of the short exposure fringe is used to detect the high-saturation region in the normal exposure fringe. Then, the corrected gray-scales of the region of the short exposure fringe selected by the mask are inserted in the saturated region of the normal fringe to form an initial fringe for iteration. At last, fringe pattern inpainting is achieved by using a CNN denoiser prior. The correct phase can be reconstructed from the inpainted fringes. The computer simulation and experiments verify the effectiveness of the proposed method.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.