{"title":"Demonstration of a high extinction ratio TiN-based TM-pass waveguide polarizer","authors":"Zhuan Zhao, G. Santi, A. Corso, M. Pelizzo","doi":"10.37190/oa220409","DOIUrl":null,"url":null,"abstract":"A high extinction ratio transverse magnetic (TM)-pass plasmonic waveguide polarizer has been designed and optimized. This device exploits two parallel TiN strips embedded in a silicon dioxide cladding to cut off the transverse electric (TE) polarization state, which is either reflected or absorbed, while the TM mode can pass through the main silicon waveguide with significant low losses. Given a device of 5 µm length, an extinction ratio as high as 60.7 dB and an insertion loss of 2.23 dB were achieved at the target wavelength of 1.55 µm. To our knowledge, this extinction ratio is one of the highest values ever reported. In the wavelength of 1.45–1.59 µm, the proposed device provides an optical bandwidth of 140 nm for an extinction ratio more than 30 dB and an insertion loss less than 3 dB. This device is relatively simple and is easier to be fabricated than other architectures that are found in the literature.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa220409","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A high extinction ratio transverse magnetic (TM)-pass plasmonic waveguide polarizer has been designed and optimized. This device exploits two parallel TiN strips embedded in a silicon dioxide cladding to cut off the transverse electric (TE) polarization state, which is either reflected or absorbed, while the TM mode can pass through the main silicon waveguide with significant low losses. Given a device of 5 µm length, an extinction ratio as high as 60.7 dB and an insertion loss of 2.23 dB were achieved at the target wavelength of 1.55 µm. To our knowledge, this extinction ratio is one of the highest values ever reported. In the wavelength of 1.45–1.59 µm, the proposed device provides an optical bandwidth of 140 nm for an extinction ratio more than 30 dB and an insertion loss less than 3 dB. This device is relatively simple and is easier to be fabricated than other architectures that are found in the literature.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.