{"title":"Robust dual color images watermarking scheme with hyperchaotic encryption based on quaternion DFrAT and genetic algorithm","authors":"Hui-Xin Luo, Li-Hua Gong, Su-Hua Chen","doi":"10.37190/oa230208","DOIUrl":null,"url":null,"abstract":"A robust dual color images watermarking algorithm is designed based on quaternion discrete fractional angular transform (QDFrAT) and genetic algorithm. To guarantee the watermark security, the original color watermark image is encrypted with a 4D hyperchaotic system. A pure quaternion matrix is acquired by performing the discrete wavelet transform (DWT), the block division and the discrete cosine transform on the original color cover image. The quaternion matrix is operated by the QDFrAT to improve the robustness and the security of the watermarking scheme with the optimal transform angle and the fractional order. Then the singular value matrix is obtained by the quaternion singular value decomposition (QSVD) to further enhance the scheme’s stability. The encryption watermark is also processed by DWT and QSVD. Afterward, the singular value matrix of the encryption watermark is embedded into the singular value matrix of the host image by the optimal scaling factor. Moreover, the values to balance imperceptibility and robustness are optimized with a genetic algorithm. It is shown that the proposed color image watermarking scheme performs well in imperceptibility, security, robustness and embedding capacity.","PeriodicalId":19589,"journal":{"name":"Optica Applicata","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica Applicata","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.37190/oa230208","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A robust dual color images watermarking algorithm is designed based on quaternion discrete fractional angular transform (QDFrAT) and genetic algorithm. To guarantee the watermark security, the original color watermark image is encrypted with a 4D hyperchaotic system. A pure quaternion matrix is acquired by performing the discrete wavelet transform (DWT), the block division and the discrete cosine transform on the original color cover image. The quaternion matrix is operated by the QDFrAT to improve the robustness and the security of the watermarking scheme with the optimal transform angle and the fractional order. Then the singular value matrix is obtained by the quaternion singular value decomposition (QSVD) to further enhance the scheme’s stability. The encryption watermark is also processed by DWT and QSVD. Afterward, the singular value matrix of the encryption watermark is embedded into the singular value matrix of the host image by the optimal scaling factor. Moreover, the values to balance imperceptibility and robustness are optimized with a genetic algorithm. It is shown that the proposed color image watermarking scheme performs well in imperceptibility, security, robustness and embedding capacity.
期刊介绍:
Acoustooptics, atmospheric and ocean optics, atomic and molecular optics, coherence and statistical optics, biooptics, colorimetry, diffraction and gratings, ellipsometry and polarimetry, fiber optics and optical communication, Fourier optics, holography, integrated optics, lasers and their applications, light detectors, light and electron beams, light sources, liquid crystals, medical optics, metamaterials, microoptics, nonlinear optics, optical and electron microscopy, optical computing, optical design and fabrication, optical imaging, optical instrumentation, optical materials, optical measurements, optical modulation, optical properties of solids and thin films, optical sensing, optical systems and their elements, optical trapping, optometry, photoelasticity, photonic crystals, photonic crystal fibers, photonic devices, physical optics, quantum optics, slow and fast light, spectroscopy, storage and processing of optical information, ultrafast optics.