The Parameter Estimation of Time-varying GM(1,1)

IF 1.5 4区 工程技术 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Grey System Pub Date : 2006-06-01 DOI:10.30016/JGS.200606.0007
Neng-Yih Shih, Neng-Jin Shih, Wen-Chun Yu
{"title":"The Parameter Estimation of Time-varying GM(1,1)","authors":"Neng-Yih Shih, Neng-Jin Shih, Wen-Chun Yu","doi":"10.30016/JGS.200606.0007","DOIUrl":null,"url":null,"abstract":"In this paper, we proposes a Time-Varying GM (1,1) (TVGM(1,1)), and using recursive least square with forgetting factor to estimate model parameters. The TVGM (1,1) provide adaptation parameter for the data does not unity environment. Which we can track system response well. From computer simulation indeed show the excellent performance, and what's more, the smoothing method and background value method for preprocessing data in the traditional GM(1,1) can be also applied to the proposed TVGM (1,1) to increase the system reliability and extend the application fields.","PeriodicalId":50187,"journal":{"name":"Journal of Grey System","volume":"9 1","pages":"51-56"},"PeriodicalIF":1.5000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grey System","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.30016/JGS.200606.0007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we proposes a Time-Varying GM (1,1) (TVGM(1,1)), and using recursive least square with forgetting factor to estimate model parameters. The TVGM (1,1) provide adaptation parameter for the data does not unity environment. Which we can track system response well. From computer simulation indeed show the excellent performance, and what's more, the smoothing method and background value method for preprocessing data in the traditional GM(1,1) can be also applied to the proposed TVGM (1,1) to increase the system reliability and extend the application fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变GM(1,1)的参数估计
本文提出了一种时变GM(1,1) (TVGM(1,1)),并使用带遗忘因子的递推最小二乘估计模型参数。TVGM(1,1)为数据不统一的环境提供了自适应参数。我们可以很好地跟踪系统响应。计算机仿真确实显示了该方法的优异性能,而且传统GM(1,1)中数据预处理的平滑方法和背景值方法也可以应用于本文提出的TVGM(1,1),提高了系统的可靠性,扩展了应用领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Grey System
Journal of Grey System 数学-数学跨学科应用
CiteScore
2.40
自引率
43.80%
发文量
0
审稿时长
1.5 months
期刊介绍: The journal is a forum of the highest professional quality for both scientists and practitioners to exchange ideas and publish new discoveries on a vast array of topics and issues in grey system. It aims to bring forth anything from either innovative to known theories or practical applications in grey system. It provides everyone opportunities to present, criticize, and discuss their findings and ideas with others. A number of areas of particular interest (but not limited) are listed as follows: Grey mathematics- Generator of Grey Sequences- Grey Incidence Analysis Models- Grey Clustering Evaluation Models- Grey Prediction Models- Grey Decision Making Models- Grey Programming Models- Grey Input and Output Models- Grey Control- Grey Game- Practical Applications.
期刊最新文献
A Study of Using Analytical Hierarchy Process and Grey Relational Grade in Wine Evaluation Selection of Discrete GM Model Initial Value by Designing Calculation Program Clustering the English Reading Performances by Using GSP And GSM The Prices Prediction of Taiwan Stock via GM(1,1) Method Apply Differences Grey Prediction Methods in the Selling of LOHAS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1