Ding Shaosong, Y. Tong, Wang Xingpu, Gao Jian’an, Z. Ying
{"title":"Ni-N Doped Porous Carbon for Electrocatalytic Reduction of CO2 into CO Driven by Solar Energy","authors":"Ding Shaosong, Y. Tong, Wang Xingpu, Gao Jian’an, Z. Ying","doi":"10.3866/pku.dxhx201912044","DOIUrl":null,"url":null,"abstract":": The electroreduction of CO 2 into value-added chemicals and fuels has garnered a broad interest by using renewable clean energy, due to both alleviating global warming and completing the carbon cycle. Herein, a high-performance Ni-N doped porous carbon catalyst was prepared through pyrolysis of hydrogen containing peptone, NiCl 2 , and NaCl made by a freeze dry method. The Ni-N-doped porous carbon catalyst displayed an excellent performance of CO 2 electroreduction with a Faraday efficiency of 92.0% at − 0.66 V ( vs . RHE), 550 mV overpotential , and 2.5 mA · cm − 2 current density. The catalytic performances were attributed to the Ni-N active sites and porous structures. In addition, CO 2 electroreduction to CO was performed continuously by using solar energy, which may provide a valuable reference for carbon cycle in future.","PeriodicalId":23447,"journal":{"name":"大学化学","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"大学化学","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.3866/pku.dxhx201912044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: The electroreduction of CO 2 into value-added chemicals and fuels has garnered a broad interest by using renewable clean energy, due to both alleviating global warming and completing the carbon cycle. Herein, a high-performance Ni-N doped porous carbon catalyst was prepared through pyrolysis of hydrogen containing peptone, NiCl 2 , and NaCl made by a freeze dry method. The Ni-N-doped porous carbon catalyst displayed an excellent performance of CO 2 electroreduction with a Faraday efficiency of 92.0% at − 0.66 V ( vs . RHE), 550 mV overpotential , and 2.5 mA · cm − 2 current density. The catalytic performances were attributed to the Ni-N active sites and porous structures. In addition, CO 2 electroreduction to CO was performed continuously by using solar energy, which may provide a valuable reference for carbon cycle in future.