BESS based voltage stability improvement enhancing the optimal control of real and reactive power compensation

IF 1.8 Q4 ENERGY & FUELS AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022027
H. Fedayi, Mikaeel Ahmadi, Abdul Basir Faiq, N. Urasaki, T. Senjyu
{"title":"BESS based voltage stability improvement enhancing the optimal control of real and reactive power compensation","authors":"H. Fedayi, Mikaeel Ahmadi, Abdul Basir Faiq, N. Urasaki, T. Senjyu","doi":"10.3934/energy.2022027","DOIUrl":null,"url":null,"abstract":"With the increase in the integration of renewable energy resources in the grid and ongoing growth in load demand worldwide, existing transmission lines are operating near their loading limits which may experience voltage collapse in a small disturbance. System stability and security can be improved when the closeness of the system to collapse is known. In this research, voltage stability of IEEE 30 bus test network is analyzed and assessed under continuously increasing load condition, utilizing the Critical Boundary Index (CBI); and improved with continuous integration of battery energy storage system (BESS). BESS is considered to be a hybrid combination of storage units and voltage source converter to have a controllable real and reactive power output. Security constraint optimal power flow is utilized for optimally sizing the installed BESS. It is evident from the outcome of the research that the voltage stability of the system is controlled to be above the acceptable range of 0.3 pu CBI in all lines and the system voltage is kept within the acceptable and constrained range of 0.9–1.1 pu.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

Abstract

With the increase in the integration of renewable energy resources in the grid and ongoing growth in load demand worldwide, existing transmission lines are operating near their loading limits which may experience voltage collapse in a small disturbance. System stability and security can be improved when the closeness of the system to collapse is known. In this research, voltage stability of IEEE 30 bus test network is analyzed and assessed under continuously increasing load condition, utilizing the Critical Boundary Index (CBI); and improved with continuous integration of battery energy storage system (BESS). BESS is considered to be a hybrid combination of storage units and voltage source converter to have a controllable real and reactive power output. Security constraint optimal power flow is utilized for optimally sizing the installed BESS. It is evident from the outcome of the research that the voltage stability of the system is controlled to be above the acceptable range of 0.3 pu CBI in all lines and the system voltage is kept within the acceptable and constrained range of 0.9–1.1 pu.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BESS的电压稳定性改进,增强了实功和无功补偿的最优控制
随着可再生能源在电网中整合的增加和全球负荷需求的持续增长,现有输电线路在其负荷极限附近运行,可能会在一个小的干扰下发生电压崩溃。当知道系统崩溃的接近程度时,系统的稳定性和安全性可以得到改善。本文利用临界边界指数(Critical Boundary Index, CBI)分析和评估了IEEE 30总线测试网络在持续增加负荷条件下的电压稳定性;并随着电池储能系统(BESS)的不断集成而改进。BESS被认为是存储单元和电压源转换器的混合组合,具有可控的实功率和无功功率输出。利用安全约束优化潮流来优化安装的BESS的尺寸。从研究结果可以看出,系统的电压稳定性被控制在所有线路的可接受范围0.3 pu CBI以上,系统电压保持在0.9-1.1 pu的可接受和约束范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
期刊最新文献
Afghanistan factor in regional energy security and trade: Existing and projected challenges and opportunities The role of techno-economic factors for net zero carbon emissions in Pakistan Modelling and development of sustainable energy systems Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya Bioenergy potential of agricultural crop residues and municipal solid waste in Cameroon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1