Bioenergy and biofuel production from biomass using thermochemical conversions technologies—a review

IF 1.8 Q4 ENERGY & FUELS AIMS Energy Pub Date : 2022-01-01 DOI:10.3934/energy.2022030
E. Danso-Boateng, Osei-Wusu Achaw
{"title":"Bioenergy and biofuel production from biomass using thermochemical conversions technologies—a review","authors":"E. Danso-Boateng, Osei-Wusu Achaw","doi":"10.3934/energy.2022030","DOIUrl":null,"url":null,"abstract":"Biofuel and bioenergy production from diverse biomass sources using thermochemical technologies over the last decades has been investigated. The thermochemical conversion pathways comprise dry processes (i.e., torrefaction, combustion, gasification, and pyrolysis), and wet processes (i.e., liquefaction, supercritical water gasification, and hydrothermal carbonisation). It has been found that the thermochemical processes can convert diverse biomass feedstocks to produce bioenergy sources such as direct heat energy, as well as solid, liquid and gaseous biofuels for instance biochar, bio-oil and syngas. However, some of these processes have limitations that impede their large-scale utilisation such low energy efficiency, high costs, and generation of harmful chemicals that cause environmental concerns. Efforts are being made extensively to improve the conversion technologies in order to reduce or solve these problems for energy efficiency improvement. In this review, the emerging developments in the thermochemical techniques for producing biofuel and bioenergy from biomass are presented and evaluated in terms of their technological concepts and projections for implementation. It is suggested that an integration of torrefaction or hydrothermal carbonisation with combustion and/or gasification may optimise biomass energy use efficiency, enhance product quality, and minimise the formation of noxious compounds.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":"1 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

Abstract

Biofuel and bioenergy production from diverse biomass sources using thermochemical technologies over the last decades has been investigated. The thermochemical conversion pathways comprise dry processes (i.e., torrefaction, combustion, gasification, and pyrolysis), and wet processes (i.e., liquefaction, supercritical water gasification, and hydrothermal carbonisation). It has been found that the thermochemical processes can convert diverse biomass feedstocks to produce bioenergy sources such as direct heat energy, as well as solid, liquid and gaseous biofuels for instance biochar, bio-oil and syngas. However, some of these processes have limitations that impede their large-scale utilisation such low energy efficiency, high costs, and generation of harmful chemicals that cause environmental concerns. Efforts are being made extensively to improve the conversion technologies in order to reduce or solve these problems for energy efficiency improvement. In this review, the emerging developments in the thermochemical techniques for producing biofuel and bioenergy from biomass are presented and evaluated in terms of their technological concepts and projections for implementation. It is suggested that an integration of torrefaction or hydrothermal carbonisation with combustion and/or gasification may optimise biomass energy use efficiency, enhance product quality, and minimise the formation of noxious compounds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用热化学转化技术从生物质中生产生物能源和生物燃料-综述
在过去的几十年里,利用热化学技术从不同的生物质来源生产生物燃料和生物能源已经进行了研究。热化学转化途径包括干过程(即,烘烤,燃烧,气化和热解)和湿过程(即,液化,超临界水气化和水热碳化)。人们已经发现,热化学过程可以将各种生物质原料转化为生物能源,如直接热能,以及固体、液体和气体生物燃料,如生物炭、生物油和合成气。然而,其中一些工艺有限制,阻碍了它们的大规模利用,如能源效率低、成本高和产生有害化学物质,引起环境问题。目前正在广泛努力改进转换技术,以减少或解决这些问题,提高能源效率。本文介绍了从生物质中生产生物燃料和生物能源的热化学技术的最新进展,并从技术概念和实施预测方面进行了评价。建议将焙烧或水热碳化与燃烧和/或气化相结合,可以优化生物质能源的利用效率,提高产品质量,并最大限度地减少有害化合物的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
期刊最新文献
Afghanistan factor in regional energy security and trade: Existing and projected challenges and opportunities The role of techno-economic factors for net zero carbon emissions in Pakistan Modelling and development of sustainable energy systems Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya Bioenergy potential of agricultural crop residues and municipal solid waste in Cameroon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1