Abdellateef Khalifa Hamid Ali, Ahmed Qassem Mohammed, Q. Mahdi
{"title":"Experimental study of a natural draft hybrid (wet/dry) cooling tower with a splash fill type","authors":"Abdellateef Khalifa Hamid Ali, Ahmed Qassem Mohammed, Q. Mahdi","doi":"10.3934/energy.2022031","DOIUrl":null,"url":null,"abstract":"Cooling towers have such a significant influence on work and efficiency that researchers and designers are working tirelessly to enhance their performance. A prototype design for a natural draft hybrid (wet/dry) cooling tower has been created, relying on geometrical, dynamic, and thermodynamic similarities. Based on Iraqi weather, experiments have been conducted using splash fill (150 mm) in summer (hot and dry) weather conditions. This study investigated heat transfer mechanisms of both air and water in a natural draft hybrid cooling tower model(NDHCTs), both directly (wet section) and indirectly (dry section). The tower is filled with splash-style packing, and the warm water is spread throughout the building using sprayer nozzles. The influences of water flow rates, fill thickness, and air velocity on the cooling range, approach, cooling capacity, thermal efficiency of the cooling tower, water evaporation loss into the air stream and water loss percentage were explored in this study. The experimental were carried out with four different water flow rates, ranging from 7.5 to 12 (Lpm) litres per minute, and eight different air velocities, all while keeping a constant inlet water temperature and a zero (m/s) crosswind. Data has been gathered, and performance variables have been determined. The findings demonstrate that the cooling tower's efficacy increases when the water flow rate is low, and the cooling range increases with increasing air velocity and decreases with increasing water flow rate; for a 7.5 Lpm water flow rate and a 2.4 m/s air velocity, it expanded to 19.5 ℃. The cooling capacity increased to 23.2 kW for a water flow rate of 12 Lpm and an air velocity of 2.4 m/s.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Cooling towers have such a significant influence on work and efficiency that researchers and designers are working tirelessly to enhance their performance. A prototype design for a natural draft hybrid (wet/dry) cooling tower has been created, relying on geometrical, dynamic, and thermodynamic similarities. Based on Iraqi weather, experiments have been conducted using splash fill (150 mm) in summer (hot and dry) weather conditions. This study investigated heat transfer mechanisms of both air and water in a natural draft hybrid cooling tower model(NDHCTs), both directly (wet section) and indirectly (dry section). The tower is filled with splash-style packing, and the warm water is spread throughout the building using sprayer nozzles. The influences of water flow rates, fill thickness, and air velocity on the cooling range, approach, cooling capacity, thermal efficiency of the cooling tower, water evaporation loss into the air stream and water loss percentage were explored in this study. The experimental were carried out with four different water flow rates, ranging from 7.5 to 12 (Lpm) litres per minute, and eight different air velocities, all while keeping a constant inlet water temperature and a zero (m/s) crosswind. Data has been gathered, and performance variables have been determined. The findings demonstrate that the cooling tower's efficacy increases when the water flow rate is low, and the cooling range increases with increasing air velocity and decreases with increasing water flow rate; for a 7.5 Lpm water flow rate and a 2.4 m/s air velocity, it expanded to 19.5 ℃. The cooling capacity increased to 23.2 kW for a water flow rate of 12 Lpm and an air velocity of 2.4 m/s.
期刊介绍:
AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy