M. Raman, P. Meena, V. Champa, V. Prema, P. Mishra
{"title":"Techno-economic assessment of microgrid in rural India considering incremental load growth over years","authors":"M. Raman, P. Meena, V. Champa, V. Prema, P. Mishra","doi":"10.3934/energy.2022041","DOIUrl":null,"url":null,"abstract":"India, being a developing country with a fast-growing economy, experiences ever increasing electrical energy demand. Industrial and economic development in rural India is impeded by inadequate, erratic and unreliable grid supply. This has resulted in underperformance of small-scale manufacturing and service industries. Dependency on fossil fuel-based sources as an alternative increases the operation costs and carbon emissions. Migration to cleaner energy ensures sustainable solution and addresses the issues of depleting fossil fuels, global warming and environmental hazards. In this regard, hybrid renewable energy systems have gained wide acceptance as optimum solution. Hence, authors have optimally designed hybrid energy system for power deprived rural Indian villages. Authors have heeded to the vital element of incremental load growth over years while designing the microgrid to sustain the increasing load demand of emerging economy of developing country. HOMER Pro Software is utilized to accomplish system size optimization and authors have gained comprehensive insights into techno-financial feasibility for different dispatch strategies of the proposed energy system. The levelized cost of electricity of the optimal off-grid system catering to multiyear incremental load growth is 0.14$/kWh indicating that proposed system is promising in terms of commercial efficacy. The study performs a detailed analysis of the results obtained during different phases of the project to ensure robustness and supply continuity of the proposed system. The paper also includes comparison of the carbon footprint in the proposed system with that of existing system.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2022041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
India, being a developing country with a fast-growing economy, experiences ever increasing electrical energy demand. Industrial and economic development in rural India is impeded by inadequate, erratic and unreliable grid supply. This has resulted in underperformance of small-scale manufacturing and service industries. Dependency on fossil fuel-based sources as an alternative increases the operation costs and carbon emissions. Migration to cleaner energy ensures sustainable solution and addresses the issues of depleting fossil fuels, global warming and environmental hazards. In this regard, hybrid renewable energy systems have gained wide acceptance as optimum solution. Hence, authors have optimally designed hybrid energy system for power deprived rural Indian villages. Authors have heeded to the vital element of incremental load growth over years while designing the microgrid to sustain the increasing load demand of emerging economy of developing country. HOMER Pro Software is utilized to accomplish system size optimization and authors have gained comprehensive insights into techno-financial feasibility for different dispatch strategies of the proposed energy system. The levelized cost of electricity of the optimal off-grid system catering to multiyear incremental load growth is 0.14$/kWh indicating that proposed system is promising in terms of commercial efficacy. The study performs a detailed analysis of the results obtained during different phases of the project to ensure robustness and supply continuity of the proposed system. The paper also includes comparison of the carbon footprint in the proposed system with that of existing system.
期刊介绍:
AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy