Contribution of a power multivector to distorting load identification

IF 1.8 Q4 ENERGY & FUELS AIMS Energy Pub Date : 2023-01-01 DOI:10.3934/energy.2023015
Anthoula Menti, D. Barkas, P. Pachos, C. Psomopoulos
{"title":"Contribution of a power multivector to distorting load identification","authors":"Anthoula Menti, D. Barkas, P. Pachos, C. Psomopoulos","doi":"10.3934/energy.2023015","DOIUrl":null,"url":null,"abstract":"The identification of harmonic generating loads and the assignation of responsibility for harmonic pollution is an important first step for harmonic control in modern power systems. In this paper, a previously introduced power multivector is examined as a possible tool for the identification of such loads. This representation of power is based on the mathematical framework of Geometric Algebra (GA). Components of the power multivector derived at the point of connection of a load are grouped into a single quantity, which is a bivector in GA and is characterized by a magnitude, direction and sense. The magnitude of this bivector can serve as an indicator of the distortion at the terminals of the load. Furthermore, in contrast to indices based solely on magnitude, such as components derived from any apparent power equation, the proposed bivectorial representation can differentiate between loads that enhance distortion and those with a mitigating effect. Its conservative nature permits an association between the distortion at specific load terminals and the common point of connection. When several loads connected along a distribution line are considered, then an evaluation of the impact of each one of these loads on the distortion at a specific point is possible. Simulation results confirm that information included in the proposed bivector can provide helpful guidance when quantities derived from apparent power equations deliver ambiguous results.","PeriodicalId":45696,"journal":{"name":"AIMS Energy","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/energy.2023015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of harmonic generating loads and the assignation of responsibility for harmonic pollution is an important first step for harmonic control in modern power systems. In this paper, a previously introduced power multivector is examined as a possible tool for the identification of such loads. This representation of power is based on the mathematical framework of Geometric Algebra (GA). Components of the power multivector derived at the point of connection of a load are grouped into a single quantity, which is a bivector in GA and is characterized by a magnitude, direction and sense. The magnitude of this bivector can serve as an indicator of the distortion at the terminals of the load. Furthermore, in contrast to indices based solely on magnitude, such as components derived from any apparent power equation, the proposed bivectorial representation can differentiate between loads that enhance distortion and those with a mitigating effect. Its conservative nature permits an association between the distortion at specific load terminals and the common point of connection. When several loads connected along a distribution line are considered, then an evaluation of the impact of each one of these loads on the distortion at a specific point is possible. Simulation results confirm that information included in the proposed bivector can provide helpful guidance when quantities derived from apparent power equations deliver ambiguous results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
功率多向量对畸变负荷识别的贡献
谐波发电负荷的识别和谐波污染责任分配是现代电力系统谐波控制的重要第一步。在本文中,我们研究了先前引入的功率多向量作为识别此类负载的可能工具。这种权力的表示是基于几何代数(GA)的数学框架。在负载连接点处导出的功率多向量的分量被分组成一个单独的量,该量在遗传算法中是一个双向量,具有幅度、方向和感知的特征。这个双向量的大小可以作为一个指标的畸变在负载的终端。此外,与仅基于幅度的指数(如从任何视在功率方程中导出的分量)相比,所提出的双向量表示可以区分增强失真的负载和具有减轻效果的负载。它的保守性质允许在特定负载端子和公共连接点的畸变之间存在关联。当考虑沿配电线路连接的多个负载时,则可以评估每个负载对特定点畸变的影响。仿真结果证实,当从视在功率方程中导出的量提供模糊的结果时,所提出的双向量中包含的信息可以提供有用的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIMS Energy
AIMS Energy ENERGY & FUELS-
CiteScore
3.80
自引率
11.10%
发文量
34
审稿时长
12 weeks
期刊介绍: AIMS Energy is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in the field of Energy technology and science. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports. AIMS Energy welcomes, but not limited to, the papers from the following topics: · Alternative energy · Bioenergy · Biofuel · Energy conversion · Energy conservation · Energy transformation · Future energy development · Green energy · Power harvesting · Renewable energy
期刊最新文献
Afghanistan factor in regional energy security and trade: Existing and projected challenges and opportunities The role of techno-economic factors for net zero carbon emissions in Pakistan Modelling and development of sustainable energy systems Empirical assessment of drivers of electricity prices in East Africa: Panel data experience of Rwanda, Uganda, Tanzania, Burundi, and Kenya Bioenergy potential of agricultural crop residues and municipal solid waste in Cameroon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1