A Genetic Algorithm for Solving a QFD(Quality Function Deployment) Optimization Problem

Jaewook Yoo
{"title":"A Genetic Algorithm for Solving a QFD(Quality Function Deployment) Optimization Problem","authors":"Jaewook Yoo","doi":"10.5392/IJOC.2020.16.4.026","DOIUrl":null,"url":null,"abstract":"Determining the optimal levels of the technical attributes (TAs) of a product to achieve a high level of customer satisfaction is the main activity in the planning process for quality function deployment (QFD). In real applications, the number of customer requirements for developing a single product is quite large, and the number of converted TAs is also high so the size of the house of quality (HoQ) becomes huge. Furthermore, the TA levels are often discrete instead of continuous and the product market can be divided into several market segments corresponding to the number of HoQ, which also unacceptably increases the size of the QFD optimization problem and the time spent on making decisions. This paper proposed a genetic algorithm (GA) solution approach to finding the optimum set of TAs in QFD in the above situation. A numerical example is provided for illustrating the proposed approach. To assess the computational performance of the GA, tests were performed on problems of various sizes using a fractional factorial design.","PeriodicalId":31343,"journal":{"name":"International Journal of Contents","volume":"16 1","pages":"26-38"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Contents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5392/IJOC.2020.16.4.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determining the optimal levels of the technical attributes (TAs) of a product to achieve a high level of customer satisfaction is the main activity in the planning process for quality function deployment (QFD). In real applications, the number of customer requirements for developing a single product is quite large, and the number of converted TAs is also high so the size of the house of quality (HoQ) becomes huge. Furthermore, the TA levels are often discrete instead of continuous and the product market can be divided into several market segments corresponding to the number of HoQ, which also unacceptably increases the size of the QFD optimization problem and the time spent on making decisions. This paper proposed a genetic algorithm (GA) solution approach to finding the optimum set of TAs in QFD in the above situation. A numerical example is provided for illustrating the proposed approach. To assess the computational performance of the GA, tests were performed on problems of various sizes using a fractional factorial design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解质量功能部署优化问题的遗传算法
确定产品的技术属性(TAs)的最佳级别以实现高水平的客户满意度是质量功能部署(QFD)计划过程中的主要活动。在实际应用中,开发单个产品的客户需求数量相当大,转换的TAs数量也很高,因此质量屋(HoQ)的规模变得巨大。此外,TA水平往往是离散的,而不是连续的,产品市场可以根据HoQ的数量划分为几个细分市场,这也增加了QFD优化问题的规模和决策时间,这是不可接受的。本文提出了一种遗传算法求解上述情况下QFD中最优TAs集的方法。给出了一个数值算例来说明所提出的方法。为了评估遗传算法的计算性能,使用分数因子设计对各种大小的问题进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Correlation between virtual reality’s intervention and monitored brain activity: A systematic review Unfamiliar or Defamiliarization: The Uncanny Valley in Interactive Artwork Installations Consequences of Advertising Literacy among College Students Perception of Digital Restoration and Representation of Cultural Heritage -Focusing on Simulation and Simulacra Item Development to Predict the Driving Risk of Older Drivers using the Delphi Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1