Inteligência computacional aplicada à detecção de câncer de mama

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2019-04-15 DOI:10.5335/RBCA.V11I1.8727
Leomar Santos Marques, R. Magalhães, D. Ferreira
{"title":"Inteligência computacional aplicada à detecção de câncer de mama","authors":"Leomar Santos Marques, R. Magalhães, D. Ferreira","doi":"10.5335/RBCA.V11I1.8727","DOIUrl":null,"url":null,"abstract":"O câncer de mama apresenta elevado índice de mortalidade em todo o mundo, sendo o mais incidente em mulheres. Seu diagnóstico tendo sido realizado por meio de rastreamento, ecografias mamárias e mamografias. Este trabalho tem como objetivo desenvolver um  classificador para identificar o câncer de mama utilizando  dados antropométricos e parâmetros de exame sanguíneo de rotina que são os biomarcadores.  Redes-Neurais do tipo Perceptron Multi-Camadas(MLP) e as redes Neuro-Fuzzy (ANFIS) empregados a um comitê de decisão, trazendo como resultado uma classificação do câncer de mama, com acurácia de 97\\%  , um valor superior apresentado comparado aos trabalhos dos últimos anos que utilizaram biomarcadores semelhantes no período de 2013 ao início do ano de 2018.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5335/RBCA.V11I1.8727","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/RBCA.V11I1.8727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

O câncer de mama apresenta elevado índice de mortalidade em todo o mundo, sendo o mais incidente em mulheres. Seu diagnóstico tendo sido realizado por meio de rastreamento, ecografias mamárias e mamografias. Este trabalho tem como objetivo desenvolver um  classificador para identificar o câncer de mama utilizando  dados antropométricos e parâmetros de exame sanguíneo de rotina que são os biomarcadores.  Redes-Neurais do tipo Perceptron Multi-Camadas(MLP) e as redes Neuro-Fuzzy (ANFIS) empregados a um comitê de decisão, trazendo como resultado uma classificação do câncer de mama, com acurácia de 97\%  , um valor superior apresentado comparado aos trabalhos dos últimos anos que utilizaram biomarcadores semelhantes no período de 2013 ao início do ano de 2018.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算智能在乳腺癌检测中的应用
乳腺癌在世界范围内死亡率很高,在女性中发病率最高。诊断是通过筛查、乳房超声和乳房x光片进行的。本研究旨在开发一种利用人体测量数据和常规血液检查参数作为生物标志物来识别乳腺癌的分类器。多层神经网络的家伙Perceptron (MLP)和神经网络-Fuzzy (ANFIS)员工委员会的一个决定,把与乳腺癌的分类结果精度97 \ %之间,近年来提出的任务相比使用类似的生物标志物在从2013年到2018年开始的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1