J. C. F. D. Rocha, A. M. Guimarães, Valter L. Estevam
{"title":"Probabilistic logic reasoning for subjective interestingness analysis","authors":"J. C. F. D. Rocha, A. M. Guimarães, Valter L. Estevam","doi":"10.5335/RBCA.V11I1.8820","DOIUrl":null,"url":null,"abstract":"This paper presents an approach that uses probabilistic logic reasoning to compute subjective interestingness scores for classification rules. In the proposed approach, domain knowledge is represented as a probabilistic logic program that encodes information from experts and statistical reports. The computation of interestingness scores is performed by a procedure that applies linear programming to reasoning regarding the probabilities of interest. It provides a mechanism to calculate probability-based subjective interestingness scores. Further, a sample application illustrates the use of the described approach.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/RBCA.V11I1.8820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an approach that uses probabilistic logic reasoning to compute subjective interestingness scores for classification rules. In the proposed approach, domain knowledge is represented as a probabilistic logic program that encodes information from experts and statistical reports. The computation of interestingness scores is performed by a procedure that applies linear programming to reasoning regarding the probabilities of interest. It provides a mechanism to calculate probability-based subjective interestingness scores. Further, a sample application illustrates the use of the described approach.