Aplicação de Números Aleatórios Artificiais e Método Monte Carlo na Análise de Confiabilidade de Redes Geodésicas

IF 0.2 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Revista Brasileira de Computacao Aplicada Pub Date : 2019-06-26 DOI:10.5335/RBCA.V11I2.8906
M. Bonimani, Vinicius Francisco Rofatto, Marcelo Tomio Matsuoka, Ivandro Klein
{"title":"Aplicação de Números Aleatórios Artificiais e Método Monte Carlo na Análise de Confiabilidade de Redes Geodésicas","authors":"M. Bonimani, Vinicius Francisco Rofatto, Marcelo Tomio Matsuoka, Ivandro Klein","doi":"10.5335/RBCA.V11I2.8906","DOIUrl":null,"url":null,"abstract":"A Geodetic Network is a network of point interconnected by direction and/or distance measurements or by using Global Navigation Satellite System receivers. Such networks are essential for the most geodetic engineering projects, such as monitoring the position and deformation of man-made structures (bridges, dams, power plants, tunnels, ports, etc.), to monitor the crustal deformation of the Earth, to implement an urban and rural cadastre, and others. One of the most important criteria that a geodetic network must meet is reliability. In this context, the reliability concerns the network's ability to detect and identify outliers. Here, we apply the Monte Carlo Method (MMC) to investigate the reliability of a geodetic network. The key of the MMC is the random number generator. Results for simulated closed levelling network reveal that identifying an outlier is more difficult than detecting it. In general, considering the simulated network, the relationship between the outlier detection and identification depends on the level of significance of the outlier statistical test.","PeriodicalId":41711,"journal":{"name":"Revista Brasileira de Computacao Aplicada","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2019-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Computacao Aplicada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5335/RBCA.V11I2.8906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

A Geodetic Network is a network of point interconnected by direction and/or distance measurements or by using Global Navigation Satellite System receivers. Such networks are essential for the most geodetic engineering projects, such as monitoring the position and deformation of man-made structures (bridges, dams, power plants, tunnels, ports, etc.), to monitor the crustal deformation of the Earth, to implement an urban and rural cadastre, and others. One of the most important criteria that a geodetic network must meet is reliability. In this context, the reliability concerns the network's ability to detect and identify outliers. Here, we apply the Monte Carlo Method (MMC) to investigate the reliability of a geodetic network. The key of the MMC is the random number generator. Results for simulated closed levelling network reveal that identifying an outlier is more difficult than detecting it. In general, considering the simulated network, the relationship between the outlier detection and identification depends on the level of significance of the outlier statistical test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工随机数与蒙特卡罗方法在测地线网络可靠性分析中的应用
大地测量网是一个通过方向和/或距离测量或使用全球导航卫星系统接收器相互连接的点网络。这种网络对于大多数大地测量工程项目是必不可少的,例如监测人造结构(桥梁、水坝、发电厂、隧道、港口等)的位置和变形,监测地球的地壳变形,实施城市和农村地地测量等等。一个大地测量网必须满足的最重要的标准之一是可靠性。在这种情况下,可靠性涉及到网络检测和识别异常值的能力。在这里,我们应用蒙特卡罗方法(MMC)来研究大地测量网的可靠性。MMC的密钥是随机数生成器。模拟结果表明,识别异常点比检测异常点要困难得多。一般来说,考虑到模拟网络,离群值检测与识别之间的关系取决于离群值统计检验的显著性水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Revista Brasileira de Computacao Aplicada
Revista Brasileira de Computacao Aplicada COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
自引率
50.00%
发文量
18
期刊最新文献
GRSR - a guideline for reporting studies results for machine learning applied to Electroencephalogram data Detecção e alerta de equipamentos não permitidos em quartos hospitalares por meio da supervisão da corrente elétrica Otimização inspirada na interação ecológica de predação do gato em relação ao rato aplicada ao problema da múltipla mochila 0-1 Classificação de sinais de voz para auxílio no diagnóstico da doença de Parkinson Authorship attribution of comments in Portuguese extracted from Reddit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1