The impact of titanium oxide nanoparticles and low direct electric current on biofilm dispersal of $Bacillus~cereus$ and $Pseudomonas~aeruginosa$: A comparative study
Mamdouh M. Shawki, Marwa M. Eltarahony, Maisa E. Moustafa
{"title":"The impact of titanium oxide nanoparticles and low direct electric current on biofilm dispersal of $Bacillus~cereus$ and $Pseudomonas~aeruginosa$: A comparative study","authors":"Mamdouh M. Shawki, Marwa M. Eltarahony, Maisa E. Moustafa","doi":"10.4279/pip.130005","DOIUrl":null,"url":null,"abstract":"Bacteria growing in biofilms cause a wide range of environmental, industrial and public health risks. Because biofilm bacteria are very resistant to antibiotics, there is an urgent need in medicine and industry to develop new approaches to eliminating bacterial biofilms. One strategy for controlling these biofilms is to generate an antibiofilm substance locally at the attachment surface. Direct electric current (DC) and nanoparticles (NPs) of metal oxides have outstanding antimicrobial properties. In this study we evaluated the effect of titanium oxide nanoparticle (TiO$_2$-NP) concentrations from 5 to 160 $\\mu$g/mL on Bacillus cereus and Pseudomonas aeruginosa biofilms, and compared this with the effect of a 9 V, 6 mA DC electric field for 5, 10 and 15 min. TiO$_2$-NPs were characterized using transmission and scanning electron microscopes, X-ray diffraction and FTIR. They exhibited an average size of 22-34 nm. The TiO$_2$-NP concentrations that attained LD50 were $104 \\pm 4$ $\\mu$g/mL and $63 \\pm 3$ $\\mu$g/mL for B. cereus and P. aeruginosa, respectively. The eradication percentages obtained by DC at 5, 10, and 15 min exposure were 21%, 29%, and 33% respectively for B. cereus and 30%, 39%, and 44% respectively for P. aeruginosa. Biofilm disintegration was verified by exopolysaccharide, protein content and cell surface hydrophobicity assessment, as well as scanning electron microscopy. These data were correlated with the reactive oxygen species produced. The results indicated that both DC and TiO$_2$-NPs have a lethal effect on these bacterial biofilms, and that the DC conditions used affect the biofilms in a similar way to TiO$_2$-NPs at concentrations of 20-40 $\\mu$g/mL.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.130005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
Bacteria growing in biofilms cause a wide range of environmental, industrial and public health risks. Because biofilm bacteria are very resistant to antibiotics, there is an urgent need in medicine and industry to develop new approaches to eliminating bacterial biofilms. One strategy for controlling these biofilms is to generate an antibiofilm substance locally at the attachment surface. Direct electric current (DC) and nanoparticles (NPs) of metal oxides have outstanding antimicrobial properties. In this study we evaluated the effect of titanium oxide nanoparticle (TiO$_2$-NP) concentrations from 5 to 160 $\mu$g/mL on Bacillus cereus and Pseudomonas aeruginosa biofilms, and compared this with the effect of a 9 V, 6 mA DC electric field for 5, 10 and 15 min. TiO$_2$-NPs were characterized using transmission and scanning electron microscopes, X-ray diffraction and FTIR. They exhibited an average size of 22-34 nm. The TiO$_2$-NP concentrations that attained LD50 were $104 \pm 4$ $\mu$g/mL and $63 \pm 3$ $\mu$g/mL for B. cereus and P. aeruginosa, respectively. The eradication percentages obtained by DC at 5, 10, and 15 min exposure were 21%, 29%, and 33% respectively for B. cereus and 30%, 39%, and 44% respectively for P. aeruginosa. Biofilm disintegration was verified by exopolysaccharide, protein content and cell surface hydrophobicity assessment, as well as scanning electron microscopy. These data were correlated with the reactive oxygen species produced. The results indicated that both DC and TiO$_2$-NPs have a lethal effect on these bacterial biofilms, and that the DC conditions used affect the biofilms in a similar way to TiO$_2$-NPs at concentrations of 20-40 $\mu$g/mL.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.