Development of two-stage multi-anvil apparatus for low-temperature measurements

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2019-01-01 DOI:10.4279/pip.110006
K. Ishigaki, J. Gouchi, S. Nagasaki, J. G. Cheng, Y. Uwatoko
{"title":"Development of two-stage multi-anvil apparatus for low-temperature measurements","authors":"K. Ishigaki, J. Gouchi, S. Nagasaki, J. G. Cheng, Y. Uwatoko","doi":"10.4279/pip.110006","DOIUrl":null,"url":null,"abstract":"The two-stage 6-8 multi-anvil (MA8) apparatus is an important large-volume, high-pressure technique that has been widely used in the high pressure mineralogy and material synthesis, mainly at room temperature or above. Recently, we have successfully developed a two-stage MA8 apparatus for low-temperature physical property measurements. The first-stage anvils at top and bottom sides are fabricated as a single piece in order to reduce the total size of the cylindrical module, which is put in a top-loading high pressure cryostat and compressed by a 1000 ton hydraulic press. A castable, split octahedral gasket with integrated fin was specifically designed in order to introduce the electrical leads from the inside sample container filled with a liquid pressure transmitting medium. By using tungsten carbide (WC) second-stage cubes with a truncated edge length of 3 mm and an octahedral gasket with an edge length of 6 mm, we have successfully generated pressure over 20 GPa at room temperature. Since the high pressure limit can be pushed to nearly 100 GPa by using the sintered diamond second-stage cubes, our MA8 apparatus has a great potential to expand the current pressure capacity for precise low-temperature measurements with a large sample volume. Edited by: A. Goñi, A. Cantarero, J. S. Reparaz","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.110006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The two-stage 6-8 multi-anvil (MA8) apparatus is an important large-volume, high-pressure technique that has been widely used in the high pressure mineralogy and material synthesis, mainly at room temperature or above. Recently, we have successfully developed a two-stage MA8 apparatus for low-temperature physical property measurements. The first-stage anvils at top and bottom sides are fabricated as a single piece in order to reduce the total size of the cylindrical module, which is put in a top-loading high pressure cryostat and compressed by a 1000 ton hydraulic press. A castable, split octahedral gasket with integrated fin was specifically designed in order to introduce the electrical leads from the inside sample container filled with a liquid pressure transmitting medium. By using tungsten carbide (WC) second-stage cubes with a truncated edge length of 3 mm and an octahedral gasket with an edge length of 6 mm, we have successfully generated pressure over 20 GPa at room temperature. Since the high pressure limit can be pushed to nearly 100 GPa by using the sintered diamond second-stage cubes, our MA8 apparatus has a great potential to expand the current pressure capacity for precise low-temperature measurements with a large sample volume. Edited by: A. Goñi, A. Cantarero, J. S. Reparaz
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
两级多砧低温测定仪的研制
两段式6-8多砧(MA8)装置是一种重要的大体积高压技术,广泛应用于室温及以上高压矿物学和材料合成领域。最近,我们成功地开发了一种用于低温物性测量的两级MA8仪器。为了减小圆柱形模块的总尺寸,顶部和底部的第一级砧被制作成一个整体,圆柱形模块被放入顶部加载的高压低温恒温器中,并由1000吨液压机压缩。为了将电引线从充满液体压力传递介质的样品容器内部引入,专门设计了一种可浇注的、带集成鳍片的分裂八面体衬垫。利用截断边长为3mm的碳化钨(WC)二级立方体和边长为6mm的八面体垫片,我们成功地在室温下产生了超过20gpa的压力。由于使用烧结金刚石第二阶段立方体可以将高压极限推至近100 GPa,因此我们的MA8仪器具有很大的潜力,可以扩大当前的压力容量,用于大样本量的精确低温测量。编辑:A. Goñi, A. Cantarero, J. S. Reparaz
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation. Heterogeneity of provider preferences for HIV Care Coordination Program features: latent class analysis of a discrete choice experiment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1