{"title":"Thermal stability of anthocyanin in mixed raspberry-pomegranate-banana nectar in the presence of ascorbic acid and citric acid","authors":"Thuyet Nguyen Minh, Han Lu Ngoc, Tai Ngo Van","doi":"10.7324/jabb.2021.100123","DOIUrl":null,"url":null,"abstract":"Thermal food processing, which causes the alteration and decomposition of natural pigments, especially anthocyanins, often leads to its lower stability. This study aimed to determine the effect of ascorbic acid and citric acid and the combination of these two chemicals on the thermal stability of the anthocyanin in the raspberry-pomegranate-banana nectar during heating at different temperatures (85°C, 90°C, and 95°C) and also investigated the influence of storage conditions (8°C ± 2°C and 28°C ± 2°C) on the stability of anthocyanin in the product. Anthocyanin degradation during heating as well as storage was followed by a first-order kinetic model with a high coefficient of determination (R2 > 0.94) and low root-mean-square error (RMSE < 0.015). By combining ascorbic acid and citric acid used in the nectar, anthocyanin showed more stability during pasteurization. It was found that the highest anthocyanin stability during storage was obtained at 8°C ± 2°C and the half-life was 11.76 weeks.","PeriodicalId":15032,"journal":{"name":"Journal of Applied Biology and Biotechnology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7324/jabb.2021.100123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Thermal food processing, which causes the alteration and decomposition of natural pigments, especially anthocyanins, often leads to its lower stability. This study aimed to determine the effect of ascorbic acid and citric acid and the combination of these two chemicals on the thermal stability of the anthocyanin in the raspberry-pomegranate-banana nectar during heating at different temperatures (85°C, 90°C, and 95°C) and also investigated the influence of storage conditions (8°C ± 2°C and 28°C ± 2°C) on the stability of anthocyanin in the product. Anthocyanin degradation during heating as well as storage was followed by a first-order kinetic model with a high coefficient of determination (R2 > 0.94) and low root-mean-square error (RMSE < 0.015). By combining ascorbic acid and citric acid used in the nectar, anthocyanin showed more stability during pasteurization. It was found that the highest anthocyanin stability during storage was obtained at 8°C ± 2°C and the half-life was 11.76 weeks.