Central Posterior Envelopes for Bayesian Functional Principal Component Analysis.

Journal of data science : JDS Pub Date : 2023-10-01 Epub Date: 2023-01-19 DOI:10.6339/23-jds1085
Joanna Boland, Donatello Telesca, Catherine Sugar, Shafali Jeste, Abigail Dickinson, Charlotte DiStefano, Damla Şentürk
{"title":"Central Posterior Envelopes for Bayesian Functional Principal Component Analysis.","authors":"Joanna Boland, Donatello Telesca, Catherine Sugar, Shafali Jeste, Abigail Dickinson, Charlotte DiStefano, Damla Şentürk","doi":"10.6339/23-jds1085","DOIUrl":null,"url":null,"abstract":"<p><p>Bayesian methods provide direct inference in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a mixed effects modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD) from resting state electroencephalography (EEG) where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.</p>","PeriodicalId":73699,"journal":{"name":"Journal of data science : JDS","volume":"1 1","pages":"715-734"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11178334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science : JDS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/23-jds1085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian methods provide direct inference in functional data analysis applications without reliance on bootstrap techniques. A major tool in functional data applications is the functional principal component analysis which decomposes the data around a common mean function and identifies leading directions of variation. Bayesian functional principal components analysis (BFPCA) provides uncertainty quantification on the estimated functional model components via the posterior samples obtained. We propose central posterior envelopes (CPEs) for BFPCA based on functional depth as a descriptive visualization tool to summarize variation in the posterior samples of the estimated functional model components, contributing to uncertainty quantification in BFPCA. The proposed BFPCA relies on a latent factor model and targets model parameters within a mixed effects modeling framework using modified multiplicative gamma process shrinkage priors on the variance components. Functional depth provides a center-outward order to a sample of functions. We utilize modified band depth and modified volume depth for ordering of a sample of functions and surfaces, respectively, to derive at CPEs of the mean and eigenfunctions within the BFPCA framework. The proposed CPEs are showcased in extensive simulations. Finally, the proposed CPEs are applied to the analysis of a sample of power spectral densities (PSD) from resting state electroencephalography (EEG) where they lead to novel insights on diagnostic group differences among children diagnosed with autism spectrum disorder and their typically developing peers across age.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯功能主成分分析的中心后包络。
贝叶斯方法可在功能数据分析应用中提供直接推断,而无需依赖引导技术。功能数据应用中的一个主要工具是功能主成分分析,它围绕一个共同的平均函数对数据进行分解,并确定变化的主要方向。贝叶斯功能主成分分析(BFPCA)通过获得的后验样本对估计的功能模型成分进行不确定性量化。我们提出了基于功能深度的贝叶斯功能主成分分析中心后验包络(CPEs),作为一种描述性可视化工具,用于总结估计功能模型成分后验样本的变化,有助于贝叶斯功能主成分分析的不确定性量化。所提出的 BFPCA 依赖于潜因模型,并在混合效应建模框架内使用方差成分的修正乘法伽马过程收缩先验来锁定模型参数。函数深度为函数样本提供了中心向外的顺序。我们利用修正带深度和修正体深度分别对函数样本和曲面进行排序,从而在 BFPCA 框架内推导出均值和特征函数的 CPE。我们通过大量模拟展示了所提出的 CPE。最后,将所提出的 CPEs 应用于静息状态脑电图(EEG)的功率谱密度(PSD)样本分析,从而对被诊断为自闭症谱系障碍的儿童与发育正常的同龄人在不同年龄段的诊断群体差异有了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood Estimation for Shape-restricted Single-index Hazard Models. Central Posterior Envelopes for Bayesian Functional Principal Component Analysis. Optimal Physician Shared-Patient Networks and the Diffusion of Medical Technologies. Generating General Preferential Attachment Networks with R Package wdnet Identification of Optimal Combined Moderators for Time to Relapse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1