Detecting a periodic signal by a population of spiking neurons in the weakly nonlinear response regime

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL The European Physical Journal E Pub Date : 2023-11-06 DOI:10.1140/epje/s10189-023-00371-x
Maria Schlungbaum, Benjamin Lindner
{"title":"Detecting a periodic signal by a population of spiking neurons in the weakly nonlinear response regime","authors":"Maria Schlungbaum,&nbsp;Benjamin Lindner","doi":"10.1140/epje/s10189-023-00371-x","DOIUrl":null,"url":null,"abstract":"<p>Motivated by experimental observations, we investigate a variant of the cocktail party problem: the detection of a weak periodic stimulus in the presence of fluctuations and another periodic stimulus which is stronger than the periodic signal to be detected. Specifically, we study the response of a population of stochastic leaky integrate-and-fire (LIF) neurons to two periodic signals and focus in particular on the question, whether the presence of one of the stimuli can be detected from the population activity. As a detection criterion, we use a simple threshold-crossing of the population activity over a certain time window. We show by means of the receiver operating characteristics (ROC) that the detectability depends only weakly on the time window of observation but rather strongly on the stimulus amplitude. Counterintuitively, the detection of the weak periodic signal can be facilitated by the presence of a strong periodic input current depending on the frequencies of the two signals and on the dynamical regime in which the neurons operate. Beside numerical simulations of the model, we present an analytical approximation for the ROC curve that is based on the weakly nonlinear response theory for a stochastic LIF neuron.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00371-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by experimental observations, we investigate a variant of the cocktail party problem: the detection of a weak periodic stimulus in the presence of fluctuations and another periodic stimulus which is stronger than the periodic signal to be detected. Specifically, we study the response of a population of stochastic leaky integrate-and-fire (LIF) neurons to two periodic signals and focus in particular on the question, whether the presence of one of the stimuli can be detected from the population activity. As a detection criterion, we use a simple threshold-crossing of the population activity over a certain time window. We show by means of the receiver operating characteristics (ROC) that the detectability depends only weakly on the time window of observation but rather strongly on the stimulus amplitude. Counterintuitively, the detection of the weak periodic signal can be facilitated by the presence of a strong periodic input current depending on the frequencies of the two signals and on the dynamical regime in which the neurons operate. Beside numerical simulations of the model, we present an analytical approximation for the ROC curve that is based on the weakly nonlinear response theory for a stochastic LIF neuron.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在弱非线性反应状态下,由一群尖峰神经元检测周期性信号。
受实验观察的启发,我们研究了鸡尾酒会问题的一个变体:在存在波动的情况下检测一个弱周期性刺激和另一个比要检测的周期性信号更强的周期性刺激。具体而言,我们研究了随机泄漏积分和激发(LIF)神经元群体对两个周期性信号的反应,并特别关注是否可以从群体活动中检测到其中一个刺激的存在这一问题。作为检测标准,我们使用特定时间窗口内种群活动的简单阈值交叉。我们通过接收器工作特性(ROC)表明,可检测性仅弱地依赖于观察的时间窗,而强烈地依赖于刺激幅度。与直觉相反,根据两个信号的频率和神经元工作的动态状态,强周期性输入电流的存在可以促进弱周期性信号的检测。除了对模型进行数值模拟外,我们还基于随机LIF神经元的弱非线性响应理论,对ROC曲线进行了分析近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
期刊最新文献
Modeling straight and circle swimmers: from single swimmer to collective motion Multibody interactions between protein inclusions in the pointlike curvature model for tense and tensionless membranes Research on sedimentation characteristics of squirmer in a power-law fluid Effect of repulsive interaction and initial velocity on collective motion process A structural determinant of the behavior of water at hydration and nanoconfinement conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1