{"title":"Automated grape leaf nutrition deficiency disease detection and classification Equilibrium Optimizer with deep transfer learning model.","authors":"Vaishali Bajait, Nandagopal Malarvizhi","doi":"10.1080/0954898X.2023.2275722","DOIUrl":null,"url":null,"abstract":"<p><p>Our approach includes picture preprocessing, feature extraction utilizing the SqueezeNet model, hyperparameter optimisation utilising the Equilibrium Optimizer (EO) algorithm, and classification utilising a Stacked Autoencoder (SAE) model. Each of these processes is carried out in a series of separate steps. During the image preprocessing stage, contrast limited adaptive histogram equalisations (CLAHE) is utilized to improve the contrasts, and Adaptive Bilateral Filtering (ABF) to get rid of any noise that may be present. The SqueezeNet paradigm is utilized to obtain relevant characteristics from the pictures that have been preprocessed, and the EO technique is utilized to fine-tune the hyperparameters. Finally, the SAE model categorises the diseases that affect the grape leaf. The simulation analysis of the EODTL-GLDC technique tested New Plant Diseases Datasets and the results were inspected in many prospects. The results demonstrate that this model outperforms other deep learning techniques and methods that are more often related to machine learning. Specifically, this technique was able to attain a precision of 96.31% on the testing datasets and 96.88% on the training data set that was split 80:20. These results offer more proof that the suggested strategy is successful in automating the detection and categorization of grape leaf diseases.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"55-72"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2023.2275722","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Our approach includes picture preprocessing, feature extraction utilizing the SqueezeNet model, hyperparameter optimisation utilising the Equilibrium Optimizer (EO) algorithm, and classification utilising a Stacked Autoencoder (SAE) model. Each of these processes is carried out in a series of separate steps. During the image preprocessing stage, contrast limited adaptive histogram equalisations (CLAHE) is utilized to improve the contrasts, and Adaptive Bilateral Filtering (ABF) to get rid of any noise that may be present. The SqueezeNet paradigm is utilized to obtain relevant characteristics from the pictures that have been preprocessed, and the EO technique is utilized to fine-tune the hyperparameters. Finally, the SAE model categorises the diseases that affect the grape leaf. The simulation analysis of the EODTL-GLDC technique tested New Plant Diseases Datasets and the results were inspected in many prospects. The results demonstrate that this model outperforms other deep learning techniques and methods that are more often related to machine learning. Specifically, this technique was able to attain a precision of 96.31% on the testing datasets and 96.88% on the training data set that was split 80:20. These results offer more proof that the suggested strategy is successful in automating the detection and categorization of grape leaf diseases.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.