Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound.

IF 3.1 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE AI (Basel, Switzerland) Pub Date : 2023-12-01 Epub Date: 2023-10-10 DOI:10.3390/ai4040044
Laith R Sultan, Allison Haertter, Maryam Al-Hasani, George Demiris, Theodore W Cary, Yale Tung-Chen, Chandra M Sehgal
{"title":"Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound.","authors":"Laith R Sultan, Allison Haertter, Maryam Al-Hasani, George Demiris, Theodore W Cary, Yale Tung-Chen, Chandra M Sehgal","doi":"10.3390/ai4040044","DOIUrl":null,"url":null,"abstract":"<p><p>With the 2019 coronavirus disease (COVID-19) pandemic, there is an increasing demand for remote monitoring technologies to reduce patient and provider exposure. One field that has an increasing potential is teleguided ultrasound, where telemedicine and point-of-care ultrasound (POCUS) merge to create this new scope. Teleguided POCUS can minimize staff exposure while preserving patient safety and oversight during bedside procedures. In this paper, we propose the use of teleguided POCUS supported by AI technologies for the remote monitoring of COVID-19 patients by non-experienced personnel including self-monitoring by the patients themselves. Our hypothesis is that AI technologies can facilitate the remote monitoring of COVID-19 patients through the utilization of POCUS devices, even when operated by individuals without formal medical training. In pursuit of this goal, we performed a pilot analysis to evaluate the performance of users with different clinical backgrounds using a computer-based system for COVID-19 detection using lung ultrasound. The purpose of the analysis was to emphasize the potential of the proposed AI technology for improving diagnostic performance, especially for users with less experience.</p>","PeriodicalId":93633,"journal":{"name":"AI (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10623579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai4040044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the 2019 coronavirus disease (COVID-19) pandemic, there is an increasing demand for remote monitoring technologies to reduce patient and provider exposure. One field that has an increasing potential is teleguided ultrasound, where telemedicine and point-of-care ultrasound (POCUS) merge to create this new scope. Teleguided POCUS can minimize staff exposure while preserving patient safety and oversight during bedside procedures. In this paper, we propose the use of teleguided POCUS supported by AI technologies for the remote monitoring of COVID-19 patients by non-experienced personnel including self-monitoring by the patients themselves. Our hypothesis is that AI technologies can facilitate the remote monitoring of COVID-19 patients through the utilization of POCUS devices, even when operated by individuals without formal medical training. In pursuit of this goal, we performed a pilot analysis to evaluate the performance of users with different clinical backgrounds using a computer-based system for COVID-19 detection using lung ultrasound. The purpose of the analysis was to emphasize the potential of the proposed AI technology for improving diagnostic performance, especially for users with less experience.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能可以通过远程指导的护理点超声辅助诊断吗?利用肺超声评估新冠肺炎诊断新计算机算法的初步研究。
随着2019冠状病毒病(新冠肺炎)大流行,对远程监测技术的需求越来越大,以减少患者和提供者的接触。一个潜力越来越大的领域是远程引导超声,远程医疗和护理点超声(POCUS)融合在一起,创造了这种新的范围。远程引导POCUS可以最大限度地减少工作人员的接触,同时在床边程序中保护患者的安全和监督。在本文中,我们建议使用人工智能技术支持的远程引导POCUS,由无经验的人员对新冠肺炎患者进行远程监测,包括患者自己进行自我监测。我们的假设是,人工智能技术可以通过使用POCUS设备来促进对新冠肺炎患者的远程监测,即使是由未经正式医疗培训的个人操作。为了实现这一目标,我们使用基于计算机的系统进行了初步分析,以评估具有不同临床背景的用户的表现,该系统用于使用肺部超声检测新冠肺炎。分析的目的是强调所提出的人工智能技术在提高诊断性能方面的潜力,特别是对于经验较少的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Can Artificial Intelligence Aid Diagnosis by Teleguided Point-of-Care Ultrasound? A Pilot Study for Evaluating a Novel Computer Algorithm for COVID-19 Diagnosis Using Lung Ultrasound. Chatbots Put to the Test in Math and Logic Problems: A Comparison and Assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard Deep Learning Performance Characterization on GPUs for Various Quantization Frameworks From Trustworthy Principles to a Trustworthy Development Process: The Need and Elements of Trusted Development of AI Systems Algorithms for All: Can AI in the Mortgage Market Expand Access to Homeownership?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1