{"title":"The current science of sequence-defined macromolecules","authors":"Karen Hakobyan , Benjamin B. Noble , Jiangtao Xu","doi":"10.1016/j.progpolymsci.2023.101754","DOIUrl":null,"url":null,"abstract":"<div><p>A fundamental endeavour in macromolecular science is the control of molecular-level complexity, including molecular weight distribution, end groups and architecture. Since the discovery that native biomacromolecules can have a specific sequence translating in a specific biological function, controlling individual monomer sequence has become the ultimate expression of molecular-level complexity. Replicating this remarkable structural precision in abiological macromolecules has emerged as a defining goal and challenge within polymer science. In this Review, we survey developments in synthetic methods, characterisation techniques, simulation workflows and applications relevant to this goal. We also address the broader question of to what extent is such control of molecular-level complexity significant in macromolecules. Specifically, we will focus on characterisation in this Review because of its importance in connecting synthesis with applications.</p></div>","PeriodicalId":413,"journal":{"name":"Progress in Polymer Science","volume":"147 ","pages":"Article 101754"},"PeriodicalIF":26.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079670023001089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A fundamental endeavour in macromolecular science is the control of molecular-level complexity, including molecular weight distribution, end groups and architecture. Since the discovery that native biomacromolecules can have a specific sequence translating in a specific biological function, controlling individual monomer sequence has become the ultimate expression of molecular-level complexity. Replicating this remarkable structural precision in abiological macromolecules has emerged as a defining goal and challenge within polymer science. In this Review, we survey developments in synthetic methods, characterisation techniques, simulation workflows and applications relevant to this goal. We also address the broader question of to what extent is such control of molecular-level complexity significant in macromolecules. Specifically, we will focus on characterisation in this Review because of its importance in connecting synthesis with applications.
期刊介绍:
Progress in Polymer Science is a journal that publishes state-of-the-art overview articles in the field of polymer science and engineering. These articles are written by internationally recognized authorities in the discipline, making it a valuable resource for staying up-to-date with the latest developments in this rapidly growing field.
The journal serves as a link between original articles, innovations published in patents, and the most current knowledge of technology. It covers a wide range of topics within the traditional fields of polymer science, including chemistry, physics, and engineering involving polymers. Additionally, it explores interdisciplinary developing fields such as functional and specialty polymers, biomaterials, polymers in drug delivery, polymers in electronic applications, composites, conducting polymers, liquid crystalline materials, and the interphases between polymers and ceramics. The journal also highlights new fabrication techniques that are making significant contributions to the field.
The subject areas covered by Progress in Polymer Science include biomaterials, materials chemistry, organic chemistry, polymers and plastics, surfaces, coatings and films, and nanotechnology. The journal is indexed and abstracted in various databases, including Materials Science Citation Index, Chemical Abstracts, Engineering Index, Current Contents, FIZ Karlsruhe, Scopus, and INSPEC.