{"title":"Scale effects on bow wave breaking of KCS ship model: Insights from DDES investigations","authors":"Jian-hua Wang, Wen-tao Wang, De-cheng Wan","doi":"10.1007/s42241-023-0056-5","DOIUrl":null,"url":null,"abstract":"<div><p>Ship bow wave breaking is a common phenomenon during navigation, involving complex multi-scale flow interactions. However, the understanding of this intense free surface flow issue is not sufficiently deep, especially regarding the lack of research on the impact of scale effects on bow wave breaking. This paper focuses on the benchmark ship model KCS and conducts numerical simulations and comparative analyses of bow wave breaking for three model scales under the condition of <i>Fr</i> = 0.35 . The numerical calculations were performed using the in-house computational fluid dynamics (CFD) solver naoe-FOAM-SJTU, which is developed on the open source platform OpenFOAM. Delayed detached eddy simulation (DDES) method is utilized to calculate the viscous flow field around the ship hull. The present method was validated through measurement data of wave profiles and wake flows obtained from model tests. Flow field results for three different scales, including bow wave profiles, vorticity at various sections, and wake distribution, were presented and analyzed. The results indicate that there is small difference in the bow wave overturning and breaking for the first two occurrences across different scales. However, considerable effects of scale are observed on the temporal and spatial variations of the free surface breaking pattern after the second overturning. The findings of this study can serve as valuable data references for the analysis of scale effects in ship bow wave breaking phenomena.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"35 4","pages":"668 - 678"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-023-0056-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ship bow wave breaking is a common phenomenon during navigation, involving complex multi-scale flow interactions. However, the understanding of this intense free surface flow issue is not sufficiently deep, especially regarding the lack of research on the impact of scale effects on bow wave breaking. This paper focuses on the benchmark ship model KCS and conducts numerical simulations and comparative analyses of bow wave breaking for three model scales under the condition of Fr = 0.35 . The numerical calculations were performed using the in-house computational fluid dynamics (CFD) solver naoe-FOAM-SJTU, which is developed on the open source platform OpenFOAM. Delayed detached eddy simulation (DDES) method is utilized to calculate the viscous flow field around the ship hull. The present method was validated through measurement data of wave profiles and wake flows obtained from model tests. Flow field results for three different scales, including bow wave profiles, vorticity at various sections, and wake distribution, were presented and analyzed. The results indicate that there is small difference in the bow wave overturning and breaking for the first two occurrences across different scales. However, considerable effects of scale are observed on the temporal and spatial variations of the free surface breaking pattern after the second overturning. The findings of this study can serve as valuable data references for the analysis of scale effects in ship bow wave breaking phenomena.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.