Palm vein recognition method based on fusion of local Gabor histograms

Ma Xin, Jing Xiaojun
{"title":"Palm vein recognition method based on fusion of local Gabor histograms","authors":"Ma Xin,&nbsp;Jing Xiaojun","doi":"10.1016/S1005-8885(17)60242-5","DOIUrl":null,"url":null,"abstract":"<div><p>Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the accuracy of palm vein recognition systems. A new local descriptor called local Gabor principal differences patterns (LGPDP) encodes the Gabor magnitude using the local maximum difference (LMD) operator. The corresponding Gabor phase patterns are encoded by local Gabor exclusive OR (XOR) patterns (LGXP). Fisher's linear discriminant (FLD) method is then implemented to reduce the dimensionality of the feature representation. Low-dimensional Gabor magnitude and phase feature vectors are finally fused to enhance accuracy. Experimental results from Institute of Automation, Chinese Academy of sciences (CASIA) database show that the proposed FLGH method achieves better performance by utilizing score-level fusion. The equal error rate (EER) is 0.08%, which outperforms other conventional palm vein recognition methods (EER range from 2.87% to 0.16%), e.g., the Laplacian palm, minutiae feature, Hessian phase, Eigenvein, local invariant features, mutual foreground local binary patterns (LBP), and multi-sampling feature fusion methods.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"24 6","pages":"Pages 55-66"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(17)60242-5","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1005888517602425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 16

Abstract

Gabor features have been shown to be effective for palm vein recognition. This paper presents a novel feature representation method, implementing the fusion of local Gabor histograms (FLGH), in order to improve the accuracy of palm vein recognition systems. A new local descriptor called local Gabor principal differences patterns (LGPDP) encodes the Gabor magnitude using the local maximum difference (LMD) operator. The corresponding Gabor phase patterns are encoded by local Gabor exclusive OR (XOR) patterns (LGXP). Fisher's linear discriminant (FLD) method is then implemented to reduce the dimensionality of the feature representation. Low-dimensional Gabor magnitude and phase feature vectors are finally fused to enhance accuracy. Experimental results from Institute of Automation, Chinese Academy of sciences (CASIA) database show that the proposed FLGH method achieves better performance by utilizing score-level fusion. The equal error rate (EER) is 0.08%, which outperforms other conventional palm vein recognition methods (EER range from 2.87% to 0.16%), e.g., the Laplacian palm, minutiae feature, Hessian phase, Eigenvein, local invariant features, mutual foreground local binary patterns (LBP), and multi-sampling feature fusion methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部Gabor直方图融合的手掌静脉识别方法
Gabor特征已被证明对手掌静脉识别是有效的。为了提高手掌静脉识别系统的精度,本文提出了一种新的特征表示方法,实现了局部Gabor直方图的融合。一种称为局部Gabor主差模式(LGPDP)的新的局部描述符使用局部最大差(LMD)算子对Gabor幅度进行编码。相应的Gabor相位模式由局部Gabor异或(XOR)模式(LGXP)编码。然后实现了Fisher线性判别(FLD)方法来降低特征表示的维数。最后融合低维Gabor幅度和相位特征向量以提高精度。中国科学院自动化研究所(CASIA)数据库的实验结果表明,所提出的FLGH方法利用分数级融合获得了更好的性能。等误差率(EER)为0.08%,优于其他传统的手掌静脉识别方法(EER范围从2.87%到0.16%),例如拉普拉斯手掌、细节特征、Hessian相位、特征静脉、局部不变特征、互前景局部二进制模式(LBP)和多采样特征融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
期刊最新文献
Survey of outdoor and indoor architecture design in TVWS networks Effect of non-spherical atmospheric charged particles and atmospheric visibility on performance of satellite-ground quantum link and parameters simulation Novel high PSRR high-order temperature-compensated subthreshold MOS bandgap reference Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network Palm vein recognition method based on fusion of local Gabor histograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1