Recep Partal , Irfan Basturk , Selda Murat Hocaoglu , Ahmet Baban , Ecem Yilmaz
{"title":"Recovery of water and reusable salt solution from reverse osmosis brine in textile industry: A case study","authors":"Recep Partal , Irfan Basturk , Selda Murat Hocaoglu , Ahmet Baban , Ecem Yilmaz","doi":"10.1016/j.wri.2022.100174","DOIUrl":null,"url":null,"abstract":"<div><p>Textile industry is one of the major water-consuming sectors; therefore, developing methods for reusing water is essential. Processes including reverse osmosis (RO) have gained momentum recently and been widely used. However, concentrated streams (brine) generated from RO must be managed properly. In this study, a pilot-scale brine treatment system containing ozone oxidation, nanofiltration (NF), RO and ion exchange (IEX) was developed and operated to recover a high quality process water and salt solution to be reused in dyeing processes. It was revealed that 77% of the water and 66% of the salt solution (as NaCl) can be recovered and brine discharge can be reduced. With full-scale operation for one year, it is possible to achieve cost-savings by 176,256 USD with 115,000 m<sup>3</sup> reused water and by 37,000 USD with 680 tons of recovered NaCl. Recovery of brine makes it possible to achieve sustainable production and zero liquid discharge concepts.</p></div>","PeriodicalId":23714,"journal":{"name":"Water Resources and Industry","volume":"27 ","pages":"Article 100174"},"PeriodicalIF":4.5000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221237172200004X/pdfft?md5=9f4befb07a174aa39c08ab96539cce00&pid=1-s2.0-S221237172200004X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources and Industry","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221237172200004X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Textile industry is one of the major water-consuming sectors; therefore, developing methods for reusing water is essential. Processes including reverse osmosis (RO) have gained momentum recently and been widely used. However, concentrated streams (brine) generated from RO must be managed properly. In this study, a pilot-scale brine treatment system containing ozone oxidation, nanofiltration (NF), RO and ion exchange (IEX) was developed and operated to recover a high quality process water and salt solution to be reused in dyeing processes. It was revealed that 77% of the water and 66% of the salt solution (as NaCl) can be recovered and brine discharge can be reduced. With full-scale operation for one year, it is possible to achieve cost-savings by 176,256 USD with 115,000 m3 reused water and by 37,000 USD with 680 tons of recovered NaCl. Recovery of brine makes it possible to achieve sustainable production and zero liquid discharge concepts.
期刊介绍:
Water Resources and Industry moves research to innovation by focusing on the role industry plays in the exploitation, management and treatment of water resources. Different industries use radically different water resources in their production processes, while they produce, treat and dispose a wide variety of wastewater qualities. Depending on the geographical location of the facilities, the impact on the local resources will vary, pre-empting the applicability of one single approach. The aims and scope of the journal include: -Industrial water footprint assessment - an evaluation of tools and methodologies -What constitutes good corporate governance and policy and how to evaluate water-related risk -What constitutes good stakeholder collaboration and engagement -New technologies enabling companies to better manage water resources -Integration of water and energy and of water treatment and production processes in industry