LatentMap: Effective auto-encoding of density maps for spatiotemporal data visualizations

Shiqi Jiang , Chenhui Li , Lei Wang , Yanpeng Hu , Changbo Wang
{"title":"LatentMap: Effective auto-encoding of density maps for spatiotemporal data visualizations","authors":"Shiqi Jiang ,&nbsp;Chenhui Li ,&nbsp;Lei Wang ,&nbsp;Yanpeng Hu ,&nbsp;Changbo Wang","doi":"10.1016/j.gvc.2021.200019","DOIUrl":null,"url":null,"abstract":"<div><p>In the study of spatiotemporal data visualization, compression and morphing of density maps are challenging tasks. Many existing methods require adjustment of multiple parameters and rich experience, but still cannot get accuracy or smooth results. In this paper, we propose a GAN-based method (LatentMap) to explore the latent space of density maps, which is an end-to-end method. First, we find that small latent codes can be used as the results of compression, which can greatly save transmission time in a front-end system. We collect density maps to make a dataset. Our model learns from the dataset and samples from the Gaussian distribution to encode and decode density maps. Second, based on the latent codes, we explore the smooth dynamic visualization of density maps, and our method can generate dynamic and smooth results. We show the results of our method in a variety of situations and evaluations from multiple aspects. The results demonstrate the effectiveness and practicality of our approach. Our method has practical applications, such as speed up front-end loading, completing or predicting stream data information and visual query.</p></div>","PeriodicalId":100592,"journal":{"name":"Graphics and Visual Computing","volume":"4 ","pages":"Article 200019"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.gvc.2021.200019","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphics and Visual Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666629421000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the study of spatiotemporal data visualization, compression and morphing of density maps are challenging tasks. Many existing methods require adjustment of multiple parameters and rich experience, but still cannot get accuracy or smooth results. In this paper, we propose a GAN-based method (LatentMap) to explore the latent space of density maps, which is an end-to-end method. First, we find that small latent codes can be used as the results of compression, which can greatly save transmission time in a front-end system. We collect density maps to make a dataset. Our model learns from the dataset and samples from the Gaussian distribution to encode and decode density maps. Second, based on the latent codes, we explore the smooth dynamic visualization of density maps, and our method can generate dynamic and smooth results. We show the results of our method in a variety of situations and evaluations from multiple aspects. The results demonstrate the effectiveness and practicality of our approach. Our method has practical applications, such as speed up front-end loading, completing or predicting stream data information and visual query.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LatentMap:用于时空数据可视化的密度图的有效自动编码
在时空数据可视化研究中,密度图的压缩和变形是一项具有挑战性的任务。现有的许多方法需要多个参数的调整和丰富的经验,但仍然无法获得准确或平滑的结果。在本文中,我们提出了一种基于GAN的方法(LatentMap)来探索密度图的潜在空间,这是一种端到端的方法。首先,我们发现小的潜在代码可以作为压缩的结果,这可以极大地节省前端系统中的传输时间。我们收集密度图来制作数据集。我们的模型从数据集和高斯分布样本中学习,以编码和解码密度图。其次,基于潜码,我们探索了密度图的平滑动态可视化,我们的方法可以产生动态和平滑的结果。我们展示了我们的方法在各种情况下的结果,并从多个方面进行了评估。结果证明了我们的方法的有效性和实用性。我们的方法具有实际应用,如加快前端加载、完成或预测流数据信息以及可视化查询。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Geometric models for plant leaf area estimation from 3D point clouds: A comparative study Efficient structuring of the latent space for controllable data reconstruction and compression Locally-guided neural denoising Editorial Note
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1