Application of Ice Pigging in a Drinking Water Distribution System: Impacts on Pipes and Bulk Water Quality

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2024-09-01 DOI:10.1016/j.eng.2023.09.016
{"title":"Application of Ice Pigging in a Drinking Water Distribution System: Impacts on Pipes and Bulk Water Quality","authors":"","doi":"10.1016/j.eng.2023.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems. However, substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality. This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks. Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality. The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes. The bacterial richness and diversity of bulk water decreased significantly after ice pigging. Furthermore, correlations were established between pipe service age, temperature, and chloride and total iron concentrations, and the 15 most abundant taxa in bulk water, which could be used to guide practical ice pigging operations.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209580992300454X/pdfft?md5=ad2b9782025103f0807ed0c29be2f2ba&pid=1-s2.0-S209580992300454X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992300454X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems. However, substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality. This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks. Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality. The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes. The bacterial richness and diversity of bulk water decreased significantly after ice pigging. Furthermore, correlations were established between pipe service age, temperature, and chloride and total iron concentrations, and the 15 most abundant taxa in bulk water, which could be used to guide practical ice pigging operations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冰清管在饮用水分配系统中的应用:对管道和散装水质的影响
冰清管是一种新兴的饮用水分配系统管道清洗技术。然而,冰清管对散装水质的潜在影响存在着大量的困惑和争议。本研究监测了中国8个多物质网络中散装水中沉积物的微观结构特征、组成和微生物群落结构。氯化物浓度分析表明,在复杂的管网中,用不同的材料分别清洗管道,可以降低冰猪丢失和水质下降的风险。显微组织和微量元素表征结果表明,冰猪几乎不会干扰长期使用的管道的内表面。冰清管后散装水细菌丰富度和多样性显著降低。此外,还建立了管道使用年限、温度、总铁和氯化物浓度与散装水中15个最丰富的分类群之间的相关性,可用于指导实际冰清管作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Digital Twins for Engineering Asset Management: Synthesis, Analytical Framework, and Future Directions Understanding the Resilience of Urban Rail Transit: Concepts, Reviews, and Trends Direct Ethylene Purification from Cracking Gas via a Metal–Organic Framework Through Pore Geometry Fitting Utilization of Bubbles and Oil for Microplastic Capture from Water Robust, Flexible, and Superhydrophobic Fabrics for High-Efficiency and Ultrawide-Band Microwave Absorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1