M. Muñoz, L. Frishkoff, Jenna E. Pruett, D. Mahler
{"title":"Evolution of a Model System: New Insights from the Study of Anolis Lizards","authors":"M. Muñoz, L. Frishkoff, Jenna E. Pruett, D. Mahler","doi":"10.1146/annurev-ecolsys-110421-103306","DOIUrl":null,"url":null,"abstract":"With decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as an emerging model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":7988,"journal":{"name":"Annual Review of Ecology, Evolution, and Systematics","volume":"39 38","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Ecology, Evolution, and Systematics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-ecolsys-110421-103306","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
With decades of intensive study, Anolis lizards have emerged as a biological model system. We review how new research on anoles has advanced our understanding of ecology and evolution, challenging long-standing paradigms and opening new areas of inquiry. Recent anole research reveals how changes in behavior can restructure ecological communities and can both stimulate and stymie evolution, sometimes simultaneously. Likewise, investigation of anoles as spatial or phylogenetic evolutionary experiments has documented evolutionary repeatability across spatiotemporal scales, while also illuminating its limits. Current research places anoles as an emerging model for Anthropocene biology, with recent work illustrating how species respond as humans reconfigure natural habitats, alter the climate, and create novel environments and communities through urbanization and species introduction. Combined with ongoing methodological developments in genomics, phylogenetics, and ecology, the growing foundational knowledge of Anolis positions them as a powerful model system in ecology and evolution for years to come. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 54 is November 2023. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Ecology, Evolution, and Systematics is a scholarly publication that has been in circulation since 1970. It focuses on important advancements in the areas of ecology, evolutionary biology, and systematics, with relevance to all forms of life on Earth. The journal features essay reviews that encompass various topics such as phylogeny, speciation, molecular evolution, behavior, evolutionary physiology, population dynamics, ecosystem processes, and applications in invasion biology, conservation, and environmental management. Recently, the current volume of the journal transitioned from a subscription-based model to open access through the Annual Reviews' Subscribe to Open program. Consequently, all articles published in the current volume are now available under a CC BY license.