Approximability of the discrete Fréchet distance

IF 0.4 Q4 MATHEMATICS Journal of Computational Geometry Pub Date : 2015-06-11 DOI:10.20382/jocg.v7i2a4
K. Bringmann, Wolfgang Mulzer
{"title":"Approximability of the discrete Fréchet distance","authors":"K. Bringmann, Wolfgang Mulzer","doi":"10.20382/jocg.v7i2a4","DOIUrl":null,"url":null,"abstract":"The Frechet distance is a popular and widespread distance measure for point sequences and for curves. About two years ago, Agarwal et al. [SIAM J. Comput. 2014] presented a new (mildly) subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several new algorithms and lower bounds. In this paper, we study the approximability of the discrete Frechet distance. Building on a recent result by Bringmann [FOCS 2014], we present a new conditional lower bound showing that strongly subquadratic algorithms for the discrete Frechet distance are unlikely to exist, even in the one-dimensional case and even if the solution may be approximated up to a factor of 1.399. This raises the question of how well we can approximate the Frechet distance (of two given $d$-dimensional point sequences of length $n$) in strongly subquadratic time. Previously, no general results were known. We present the first such algorithm by analysing the approximation ratio of a simple, linear-time greedy algorithm to be $2^{\\Theta(n)}$. Moreover, we design an $\\alpha$-approximation algorithm that runs in time $O(n\\log n + n^2/\\alpha)$, for any $\\alpha\\in [1, n]$. Hence, an $n^\\varepsilon$-approximation of the Frechet distance can be computed in strongly subquadratic time, for any $\\varepsilon > 0$.","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"88 2","pages":"739-753"},"PeriodicalIF":0.4000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i2a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 77

Abstract

The Frechet distance is a popular and widespread distance measure for point sequences and for curves. About two years ago, Agarwal et al. [SIAM J. Comput. 2014] presented a new (mildly) subquadratic algorithm for the discrete version of the problem. This spawned a flurry of activity that has led to several new algorithms and lower bounds. In this paper, we study the approximability of the discrete Frechet distance. Building on a recent result by Bringmann [FOCS 2014], we present a new conditional lower bound showing that strongly subquadratic algorithms for the discrete Frechet distance are unlikely to exist, even in the one-dimensional case and even if the solution may be approximated up to a factor of 1.399. This raises the question of how well we can approximate the Frechet distance (of two given $d$-dimensional point sequences of length $n$) in strongly subquadratic time. Previously, no general results were known. We present the first such algorithm by analysing the approximation ratio of a simple, linear-time greedy algorithm to be $2^{\Theta(n)}$. Moreover, we design an $\alpha$-approximation algorithm that runs in time $O(n\log n + n^2/\alpha)$, for any $\alpha\in [1, n]$. Hence, an $n^\varepsilon$-approximation of the Frechet distance can be computed in strongly subquadratic time, for any $\varepsilon > 0$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散法氏距离的近似性
Frechet距离是点序列和曲线的一种流行和广泛的距离度量。大约两年前,Agarwal等人[SIAM J. Comput. 2014]提出了一种新的(温和的)次二次算法来解决该问题的离散版本。这引发了一系列的活动,产生了几个新的算法和下界。本文研究了离散Frechet距离的近似性。基于Bringmann [FOCS 2014]最近的结果,我们提出了一个新的条件下界,表明离散Frechet距离的强次二次算法不太可能存在,即使在一维情况下,即使解可能近似到1.399的因子。这就提出了一个问题,我们如何在强次二次时间内很好地近似Frechet距离(两个给定的$d$ -维长度为$n$的点序列)。在此之前,没有已知的一般结果。我们通过分析一个简单的线性时间贪心算法的近似比为$2^{\Theta(n)}$,提出了第一个这样的算法。此外,我们设计了一个$\alpha$ -近似算法,该算法运行在时间$O(n\log n + n^2/\alpha)$上,适用于任何$\alpha\in [1, n]$。因此,对于任何$\varepsilon > 0$, Frechet距离的$n^\varepsilon$ -近似可以在强次二次时间内计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
审稿时长
52 weeks
期刊最新文献
Hyperplane separability and convexity of probabilistic point sets On the complexity of minimum-link path problems Hyperorthogonal well-folded Hilbert curves Approximability of the discrete Fréchet distance Shortest path to a segment and quickest visibility queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1