Tsunami Early Warning System Based on Maritime Wireless Communication

Aryanti Karlina Nurendyastuti, Mochamad Mardi Marta Dinata, Arumjeni Mitayani, Muhammad Rizki Purnama, Mohammad Bagus Adityawan, Mohammad Farid, Arno Adi Kuntoro, Widyaningtias
{"title":"Tsunami Early Warning System Based on Maritime Wireless Communication","authors":"Aryanti Karlina Nurendyastuti, Mochamad Mardi Marta Dinata, Arumjeni Mitayani, Muhammad Rizki Purnama, Mohammad Bagus Adityawan, Mohammad Farid, Arno Adi Kuntoro, Widyaningtias","doi":"10.22146/jcef.2878","DOIUrl":null,"url":null,"abstract":"Tsunami buoy, linked to satellite, is commonly used as a tsunami early warning system but has been discovered to have several drawbacks such as the need for approximately 5 minutes to issue an early warning for a tsunami after detecting the initial wave as well as its fragility. It was also reported that the twenty-two buoys placed in the Indonesian seas from 2012 to 2018 were damaged and missing. Therefore, this study proposes a new method for tsunami early warning by integrating ship-to-ship maritime wireless communication. It is important to note that vessels or fishing boats with over 30 GT have the ability to travel more than 100 nmi (approximately 180 km) from the shoreline and can be equipped with point-to-multipoint VHF radio communication. Meanwhile, smaller boats on the fishing ground located approximately 2-5 km from the shore can use a WiFi network to communicate like a wireless mesh while the existing terrestrial network can be used for the ship-to-shore communication between boats and land stations. This system is expected to provide significant benefits for a fishing town such as Pangandaran, West Java, Indonesia which is directly facing Java Megathrust in the Indian Ocean. Therefore, a tsunami numerical simulation was conducted in this study using Shallow Water Equation which involved a hypothetical tsunami simulated from the possible fault source which is approximately 250 km from the source. Moreover, the vessel’s location was assumed to be in line with the fishing ground while the arrival time of the tsunami was estimated from the model to be 22.5 minutes and compared to the relay time of the proposed system which was approximately 5.4 seconds. This is faster in terms of delay than the existing system which relays information through satellite at approximately 5 minutes in an ideal condition and also has the ability to reduce the need for tsunami buoys.","PeriodicalId":31890,"journal":{"name":"Journal of the Civil Engineering Forum","volume":"15 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Civil Engineering Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jcef.2878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Tsunami buoy, linked to satellite, is commonly used as a tsunami early warning system but has been discovered to have several drawbacks such as the need for approximately 5 minutes to issue an early warning for a tsunami after detecting the initial wave as well as its fragility. It was also reported that the twenty-two buoys placed in the Indonesian seas from 2012 to 2018 were damaged and missing. Therefore, this study proposes a new method for tsunami early warning by integrating ship-to-ship maritime wireless communication. It is important to note that vessels or fishing boats with over 30 GT have the ability to travel more than 100 nmi (approximately 180 km) from the shoreline and can be equipped with point-to-multipoint VHF radio communication. Meanwhile, smaller boats on the fishing ground located approximately 2-5 km from the shore can use a WiFi network to communicate like a wireless mesh while the existing terrestrial network can be used for the ship-to-shore communication between boats and land stations. This system is expected to provide significant benefits for a fishing town such as Pangandaran, West Java, Indonesia which is directly facing Java Megathrust in the Indian Ocean. Therefore, a tsunami numerical simulation was conducted in this study using Shallow Water Equation which involved a hypothetical tsunami simulated from the possible fault source which is approximately 250 km from the source. Moreover, the vessel’s location was assumed to be in line with the fishing ground while the arrival time of the tsunami was estimated from the model to be 22.5 minutes and compared to the relay time of the proposed system which was approximately 5.4 seconds. This is faster in terms of delay than the existing system which relays information through satellite at approximately 5 minutes in an ideal condition and also has the ability to reduce the need for tsunami buoys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于海上无线通信的海啸预警系统
与卫星相连的海啸浮标通常被用作海啸预警系统,但人们发现它有几个缺点,例如在探测到最初的波浪及其脆弱性之后,需要大约5分钟才能发出海啸预警。另据报道,2012年至2018年在印尼海域放置的22个浮标遭到损坏和失踪。因此,本研究提出了一种整合船对船海上无线通信的海啸预警新方法。值得注意的是,拥有超过30 GT的船只或渔船能够从海岸线行驶超过100海里(约180公里),并且可以配备点对多点甚高频无线电通信。同时,位于离海岸约2-5公里的渔场上的小型船只可以使用WiFi网络像无线网一样进行通信,而现有的地面网络可以用于船只和陆面站之间的船对岸通信。该系统预计将为印度尼西亚西爪哇的Pangandaran等渔业城镇带来重大利益,该城镇正面对印度洋上的爪哇巨型逆冲构造。因此,本研究利用浅水方程进行了海啸数值模拟,其中涉及了从距离震源约250 km的可能断层源模拟的假设海啸。此外,假设该船的位置与渔场一致,而从模型估计海啸到达时间为22.5分钟,而拟议系统的中继时间约为5.4秒。就延迟而言,这比现有系统要快,现有系统在理想情况下通过卫星传递信息大约需要5分钟,而且还能够减少对海啸浮标的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
20
审稿时长
15 weeks
期刊最新文献
Airline Choice Decision for Jakarta-Denpasar Route During the Covid-19 Pandemic Comparative Seismic Analysis of G+20 RC Framed Structure Building for with and without Shear Walls Proposal and Evaluation of Vertical Vibration Theory of Air Caster Seismic Vulnerability Assessment of Regular and Vertically Irregular Residential Buildings in Nepal Numerical Study on the Effects of Helix Diameter and Spacing on the Helical Pile Axial Bearing Capacity in Cohesionless Soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1