{"title":"Structural selection of liquid hydrogen lubricated herringbone spiral-grooved thrust bearing considering viscous dissipative heat","authors":"S. Yan, T. Lai, Yingke Gao, Mingzhe Liu, Yu Hou","doi":"10.1177/13506501231194201","DOIUrl":null,"url":null,"abstract":"Spiral-grooved thrust bearing (SGTB) is one of the important kinds of supporting component in high-speed rotating devices. The high shearing rate of SGTB can produce a large amount of viscous dissipative heat, which causes a temperature rise. Dynamic pressure effect induces pressure variation in the herringbone SGTB (HSGTB). When liquid hydrogen (LH2) is used as a lubricant, cavitation caused by lower pressure and higher temperature can result in lubrication failure. Especially, the cavitation of LH2 is more prone to occur because of its small temperature difference between the triple point and critical point, and the smaller supercooling degree. The influence of thermal properties on the phase transition process of LH2 is more significant. In this paper, the thermal and mechanical performance of three different structures of LH2 lubricated SGTB is compared by considering viscous dissipative heat. Herringbone SGTB is proposed for better performance and feasibility of its application in LH2 lubrication. The static performances of HSGTB such as load capacity, friction torque, cavitation rate, average temperature, and heat flux have been evaluated numerically by introducing the cryogenic cavitation model. The orthogonal sampling method and range analysis are used to optimize the HSGTB structure. Compared with the original HSGTB, cavitation rate and temperature rise are significantly suppressed in the optimized HSGTB. In addition, the load capacity is also improved effectively at high rotational speed, which is expected to be applied to high-speed centrifugal pumps.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"40 1","pages":"1953 - 1971"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231194201","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spiral-grooved thrust bearing (SGTB) is one of the important kinds of supporting component in high-speed rotating devices. The high shearing rate of SGTB can produce a large amount of viscous dissipative heat, which causes a temperature rise. Dynamic pressure effect induces pressure variation in the herringbone SGTB (HSGTB). When liquid hydrogen (LH2) is used as a lubricant, cavitation caused by lower pressure and higher temperature can result in lubrication failure. Especially, the cavitation of LH2 is more prone to occur because of its small temperature difference between the triple point and critical point, and the smaller supercooling degree. The influence of thermal properties on the phase transition process of LH2 is more significant. In this paper, the thermal and mechanical performance of three different structures of LH2 lubricated SGTB is compared by considering viscous dissipative heat. Herringbone SGTB is proposed for better performance and feasibility of its application in LH2 lubrication. The static performances of HSGTB such as load capacity, friction torque, cavitation rate, average temperature, and heat flux have been evaluated numerically by introducing the cryogenic cavitation model. The orthogonal sampling method and range analysis are used to optimize the HSGTB structure. Compared with the original HSGTB, cavitation rate and temperature rise are significantly suppressed in the optimized HSGTB. In addition, the load capacity is also improved effectively at high rotational speed, which is expected to be applied to high-speed centrifugal pumps.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).