Dongyang Li, Chunyang Gu, Shuo Wang, He Zhang, C. Gerada, R. Camilleri, Yue Zhang
{"title":"An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer","authors":"Dongyang Li, Chunyang Gu, Shuo Wang, He Zhang, C. Gerada, R. Camilleri, Yue Zhang","doi":"10.1109/ITECAsia-Pacific56316.2022.9941931","DOIUrl":null,"url":null,"abstract":"PM-Assisted synchronous reluctance machines (PMSynRM) show large speed fluctuations and poor dynamic response when encountering a large disturbance. Additionally, the PI controller is not capable of eliminating steady-state errors when disturbances are encountered. An extended state observer (ESO) based control method is proposed in this paper to resolve these problems. Thanks to the proposed control strategy, the ESO can detect and provide feedback to the controller in a short period of time, which allows it to respond in a timely manner. Speed Control accuracy is increased, and response time is reduced simultaneously as a result. Meanwhile, stability analysis is implemented to determine the stability condition of the observer, so that optimized observer parameters could be obtained. The ESO-based control strategy is effective at reducing dynamic response time and increasing control accuracy, according to simulations.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"48 1","pages":"1-6"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9941931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
PM-Assisted synchronous reluctance machines (PMSynRM) show large speed fluctuations and poor dynamic response when encountering a large disturbance. Additionally, the PI controller is not capable of eliminating steady-state errors when disturbances are encountered. An extended state observer (ESO) based control method is proposed in this paper to resolve these problems. Thanks to the proposed control strategy, the ESO can detect and provide feedback to the controller in a short period of time, which allows it to respond in a timely manner. Speed Control accuracy is increased, and response time is reduced simultaneously as a result. Meanwhile, stability analysis is implemented to determine the stability condition of the observer, so that optimized observer parameters could be obtained. The ESO-based control strategy is effective at reducing dynamic response time and increasing control accuracy, according to simulations.