Classification of Wild Animals based on SVM and Local Descriptors

Slavomir Matuska, Robert Hudec, Patrik Kamencay, Miroslav Benco, Martina Zachariasova
{"title":"Classification of Wild Animals based on SVM and Local Descriptors","authors":"Slavomir Matuska,&nbsp;Robert Hudec,&nbsp;Patrik Kamencay,&nbsp;Miroslav Benco,&nbsp;Martina Zachariasova","doi":"10.1016/j.aasri.2014.09.006","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a novel method for object recognition based on hybrid local descriptors is presented. This method utilizes a combination of a few approaches (SIFT - Scale-invariant feature transform, SURF - Speeded Up Robust Features) and consists of second parts. The applicability of the presented hybrid methods are demonstrated on a few images from dataset. Dataset classes represent big animals situated in Slovak country, namely wolf, fox, brown bear, deer and wild boar. The presented method may be also used in other areas of image classification and feature extraction. The experimental results show, that the combination of local descriptors has a positive effect for object recognition.</p></div>","PeriodicalId":100008,"journal":{"name":"AASRI Procedia","volume":"9 ","pages":"Pages 25-30"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aasri.2014.09.006","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AASRI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212671614001061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In this paper, a novel method for object recognition based on hybrid local descriptors is presented. This method utilizes a combination of a few approaches (SIFT - Scale-invariant feature transform, SURF - Speeded Up Robust Features) and consists of second parts. The applicability of the presented hybrid methods are demonstrated on a few images from dataset. Dataset classes represent big animals situated in Slovak country, namely wolf, fox, brown bear, deer and wild boar. The presented method may be also used in other areas of image classification and feature extraction. The experimental results show, that the combination of local descriptors has a positive effect for object recognition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SVM和局部描述符的野生动物分类
提出了一种基于混合局部描述子的目标识别方法。该方法结合SIFT -尺度不变特征变换和SURF -加速鲁棒特征变换两种方法,分为第二部分。在数据集中的少量图像上验证了混合方法的适用性。数据集类代表位于斯洛伐克国家的大型动物,即狼、狐狸、棕熊、鹿和野猪。该方法也可用于图像分类和特征提取的其他领域。实验结果表明,局部描述符的组合对目标识别有积极的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preface Preface Preface Preface Classification of Wild Animals based on SVM and Local Descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1