Harmony search for feature selection in speech emotion recognition

Yongsen Tao, Kunxia Wang, Jing Yang, Ning An, Lian Li
{"title":"Harmony search for feature selection in speech emotion recognition","authors":"Yongsen Tao, Kunxia Wang, Jing Yang, Ning An, Lian Li","doi":"10.1109/ACII.2015.7344596","DOIUrl":null,"url":null,"abstract":"Feature selection is a significant aspect of speech emotion recognition system. How to select a small subset out of the thousands of speech data is important for accurate classification of speech emotion. In this paper we investigate heuristic algorithm Harmony search (HS) for feature selection. We extract 3 feature sets, including MFCC, Fourier Parameters (FP), and features extracted with The Munich open Speech and Music Interpretation by Large Space Extraction (openSMILE) toolkit, from Berlin German emotion database (EMODB) and Chinese Elderly emotion database (EESDB). And combine MFCC with FP as the fourth feature set. We use Harmony search to select subsets and decrease the dimension space, and employ 10-fold cross validation in LIBSVM to evaluate the change of accuracy between selected subsets and original sets. Experimental results show that each subset's size reduced by about 50%, however, there is no sharp degeneration on accuracy and the accuracy almost maintains the original ones.","PeriodicalId":6863,"journal":{"name":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","volume":"42 1","pages":"362-367"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Affective Computing and Intelligent Interaction (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACII.2015.7344596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Feature selection is a significant aspect of speech emotion recognition system. How to select a small subset out of the thousands of speech data is important for accurate classification of speech emotion. In this paper we investigate heuristic algorithm Harmony search (HS) for feature selection. We extract 3 feature sets, including MFCC, Fourier Parameters (FP), and features extracted with The Munich open Speech and Music Interpretation by Large Space Extraction (openSMILE) toolkit, from Berlin German emotion database (EMODB) and Chinese Elderly emotion database (EESDB). And combine MFCC with FP as the fourth feature set. We use Harmony search to select subsets and decrease the dimension space, and employ 10-fold cross validation in LIBSVM to evaluate the change of accuracy between selected subsets and original sets. Experimental results show that each subset's size reduced by about 50%, however, there is no sharp degeneration on accuracy and the accuracy almost maintains the original ones.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
和谐搜索在语音情感识别中的特征选择
特征选择是语音情感识别系统的一个重要方面。如何从成千上万的语音数据中选择出一个小的子集,对于语音情感的准确分类是非常重要的。本文研究了启发式和谐搜索算法(HS)在特征选择中的应用。我们从柏林德国情感数据库(EMODB)和中国老年人情感数据库(EESDB)中提取了3个特征集,包括MFCC、傅里叶参数(FP)和慕尼黑开放语音和音乐大空间提取(openSMILE)工具包提取的特征集。并结合MFCC和FP作为第四个特性集。我们使用Harmony搜索来选择子集并减少维度空间,并在LIBSVM中使用10倍交叉验证来评估所选子集与原始集之间的准确率变化。实验结果表明,每个子集的大小减少了约50%,但精度没有明显下降,精度基本保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Avatar and participant gender differences in the perception of uncanniness of virtual humans Neural conditional ordinal random fields for agreement level estimation Fundamental frequency modeling using wavelets for emotional voice conversion Bimodal feature-based fusion for real-time emotion recognition in a mobile context Harmony search for feature selection in speech emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1