Visual signature verification using affine arc-length

Mario E. Munich, P. Perona
{"title":"Visual signature verification using affine arc-length","authors":"Mario E. Munich, P. Perona","doi":"10.1109/CVPR.1999.784627","DOIUrl":null,"url":null,"abstract":"Signatures can be acquired with a camera-based system with enough resolution to perform verification. This paper presents the performance of a visual-acquisition signature verification system, emphasizing on the importance of the parameterisation of the signature in order to achieve good classification results. A technique to overcome the lack of examples in order to estimate the generalization error of the algorithm is also described.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"115 1","pages":"180-186 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Signatures can be acquired with a camera-based system with enough resolution to perform verification. This paper presents the performance of a visual-acquisition signature verification system, emphasizing on the importance of the parameterisation of the signature in order to achieve good classification results. A technique to overcome the lack of examples in order to estimate the generalization error of the algorithm is also described.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用仿射弧长的视觉签名验证
签名可以通过基于相机的系统获得,该系统具有足够的分辨率来执行验证。本文介绍了一种视觉采集签名验证系统的性能,强调了签名参数化的重要性,以获得良好的分类效果。本文还介绍了一种克服实例不足的技术,以估计算法的泛化误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1