Material classification for 3D objects in aerial hyperspectral images

D. Slater, G. Healey
{"title":"Material classification for 3D objects in aerial hyperspectral images","authors":"D. Slater, G. Healey","doi":"10.1109/CVPR.1999.784641","DOIUrl":null,"url":null,"abstract":"Automated material classification from airborne imagery is an important capability for many applications including target recognition and geospatial database construction. Hyperspectral imagery provides a rich source of information for this purpose but utilization is complicated by the variability in a material's observed spectral signature due to the ambient conditions and the scene geometry. In this paper, we present a method that uses a single spectral radiance function measured from a material under unknown conditions to synthesize a comprehensive set of radiance spectra that corresponds to that material over a wide range of conditions. This set of radiance spectra can be used to build a hyperspectral subspace representation that can be used for material identification over a wide range of circumstances. We demonstrate the use of these algorithms for model synthesis and material mapping using HYDICE imagery acquired at Fort Hood, Texas. The method correctly maps several classes of roofing materials, roads, and vegetation over significant spectral changes due to variation in surface orientation. We show that the approach outperforms methods based on direct spectral comparison.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"26 1","pages":"268-273 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Automated material classification from airborne imagery is an important capability for many applications including target recognition and geospatial database construction. Hyperspectral imagery provides a rich source of information for this purpose but utilization is complicated by the variability in a material's observed spectral signature due to the ambient conditions and the scene geometry. In this paper, we present a method that uses a single spectral radiance function measured from a material under unknown conditions to synthesize a comprehensive set of radiance spectra that corresponds to that material over a wide range of conditions. This set of radiance spectra can be used to build a hyperspectral subspace representation that can be used for material identification over a wide range of circumstances. We demonstrate the use of these algorithms for model synthesis and material mapping using HYDICE imagery acquired at Fort Hood, Texas. The method correctly maps several classes of roofing materials, roads, and vegetation over significant spectral changes due to variation in surface orientation. We show that the approach outperforms methods based on direct spectral comparison.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空高光谱图像中三维物体的材料分类
从航空图像中自动分类材料是目标识别和地理空间数据库构建等许多应用的重要能力。高光谱图像为此目的提供了丰富的信息来源,但由于环境条件和场景几何形状导致材料观察到的光谱特征的可变性,使用起来很复杂。在本文中,我们提出了一种方法,该方法使用从未知条件下的材料测量的单一光谱辐射函数来合成一套全面的辐射光谱,该光谱对应于该材料在各种条件下的辐射光谱。这组辐射光谱可用于建立高光谱子空间表示,可用于在各种情况下的材料识别。我们使用在德克萨斯州胡德堡获得的HYDICE图像来演示这些算法在模型合成和材料映射中的应用。该方法正确地绘制了几种类型的屋顶材料、道路和植被,这些植被由于表面方向的变化而发生了显著的光谱变化。我们表明,该方法优于基于直接光谱比较的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1