Self-Calibration of Optical Lenses

M. Hirsch, B. Scholkopf
{"title":"Self-Calibration of Optical Lenses","authors":"M. Hirsch, B. Scholkopf","doi":"10.1109/ICCV.2015.77","DOIUrl":null,"url":null,"abstract":"Even high-quality lenses suffer from optical aberrations, especially when used at full aperture. Furthermore, there are significant lens-to-lens deviations due to manufacturing tolerances, often rendering current software solutions like DxO, Lightroom, and PTLens insufficient as they don't adapt and only include generic lens blur models. We propose a method that enables the self-calibration of lenses from a natural image, or a set of such images. To this end we develop a machine learning framework that is able to exploit several recorded images and distills the available information into an accurate model of the considered lens.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"277 1","pages":"612-620"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Even high-quality lenses suffer from optical aberrations, especially when used at full aperture. Furthermore, there are significant lens-to-lens deviations due to manufacturing tolerances, often rendering current software solutions like DxO, Lightroom, and PTLens insufficient as they don't adapt and only include generic lens blur models. We propose a method that enables the self-calibration of lenses from a natural image, or a set of such images. To this end we develop a machine learning framework that is able to exploit several recorded images and distills the available information into an accurate model of the considered lens.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光学镜片的自校正
即使是高质量的镜头也会受到光学像差的影响,尤其是在全光圈下使用时。此外,由于制造公差,存在明显的镜头到镜头的偏差,通常导致当前的软件解决方案(如DxO, Lightroom和PTLens)不足,因为它们不适应并且只包括通用的镜头模糊模型。我们提出了一种方法,使镜头的自校准从一个自然图像,或一组这样的图像。为此,我们开发了一个机器学习框架,该框架能够利用多个记录的图像,并将可用信息提取到所考虑的镜头的准确模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Listening with Your Eyes: Towards a Practical Visual Speech Recognition System Using Deep Boltzmann Machines Self-Calibration of Optical Lenses Single Image Pop-Up from Discriminatively Learned Parts Multi-task Recurrent Neural Network for Immediacy Prediction Low-Rank Tensor Approximation with Laplacian Scale Mixture Modeling for Multiframe Image Denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1