Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00023
Yu Lei, Guangyuan Zhao, Lingjie Zhang
{"title":"Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification","authors":"Yu Lei, Guangyuan Zhao, Lingjie Zhang","doi":"10.1109/ICNLP58431.2023.00023","DOIUrl":null,"url":null,"abstract":"Vegetation classification has a pivotal role in forest management and ecological research. It is a specific application problem in hyperspectral image classification. However, the existing classification models do not make sufficient use of the spatial features of vegetation, and cannot extract deep feature information. To address these issues, we propose a deep composite kernel extreme learning machine based on spatial feature extraction (DCKELM-SPATIAL) to classify vegetation. Especially, we use the Gabor filter and super-pixel density peak clustering method to obtain a new set of spatial composite kernels. Experiments are carried out on two sets of real hyperspectral vegetation datasets. The results show that this method is superior to some classical and advanced methods in classification accuracy, and satisfactory results are obtained.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"26 1","pages":"92-97"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation classification has a pivotal role in forest management and ecological research. It is a specific application problem in hyperspectral image classification. However, the existing classification models do not make sufficient use of the spatial features of vegetation, and cannot extract deep feature information. To address these issues, we propose a deep composite kernel extreme learning machine based on spatial feature extraction (DCKELM-SPATIAL) to classify vegetation. Especially, we use the Gabor filter and super-pixel density peak clustering method to obtain a new set of spatial composite kernels. Experiments are carried out on two sets of real hyperspectral vegetation datasets. The results show that this method is superior to some classical and advanced methods in classification accuracy, and satisfactory results are obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于空间特征提取的深度复合核ELM高光谱植被图像分类
植被分类在森林经营和生态学研究中具有举足轻重的作用。它是高光谱图像分类中的一个具体应用问题。然而,现有的分类模型没有充分利用植被的空间特征,无法提取深度特征信息。为了解决这些问题,我们提出了一种基于空间特征提取的深度复合核极限学习机(DCKELM-SPATIAL)来对植被进行分类。特别地,我们使用Gabor滤波器和超像素密度峰聚类方法获得了一组新的空间复合核。在两组真实高光谱植被数据集上进行了实验。结果表明,该方法在分类精度上优于一些经典和先进的方法,并取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1