A Two Stage Learning Algorithm for Hyperspectral Image Classification

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00022
Shuying Li, Qiang Zhang, Lei Cheng, Baidong Peng
{"title":"A Two Stage Learning Algorithm for Hyperspectral Image Classification","authors":"Shuying Li, Qiang Zhang, Lei Cheng, Baidong Peng","doi":"10.1109/ICNLP58431.2023.00022","DOIUrl":null,"url":null,"abstract":"Since the excellent performance of Support Vector Machine (SVM) in handling with high-dimensional data, it is often used in the field of hyperspectral image (HSI) classification. However, traditional SVM methods only uses a single Mercer kernel function as base kernel, which does not represent the similarity of samples well. Meanwhile, it cannot utilize the spatial background information to enhance the HSI classification results. To address these issues, the paper proposes a two-stage learning (TSL) algorithm for HSI classification. In the first stage, a new Kernel Singular Value Decomposition-Multiple Kernel learning (KSVD-MKL) method is proposed for SVM Multiple Kernel Learning (MKL), which allows the best combination of kernels to be composed by using Gaussian kernels with different bandwidth scales. In the second stage, the KSVD-MKL classification is used as the initial spectral term classification results. Then, spatial information is modeled by using Conditional Random Field (CRF) observation fields and labels, and the KSVD-MKL classification results are optimized. Experiment results on public Indian pines and Botswana datasets demonstrate that the classification accuracy of the proposed method is effectively improved against existing algorithms.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"130 1","pages":"86-91"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

Since the excellent performance of Support Vector Machine (SVM) in handling with high-dimensional data, it is often used in the field of hyperspectral image (HSI) classification. However, traditional SVM methods only uses a single Mercer kernel function as base kernel, which does not represent the similarity of samples well. Meanwhile, it cannot utilize the spatial background information to enhance the HSI classification results. To address these issues, the paper proposes a two-stage learning (TSL) algorithm for HSI classification. In the first stage, a new Kernel Singular Value Decomposition-Multiple Kernel learning (KSVD-MKL) method is proposed for SVM Multiple Kernel Learning (MKL), which allows the best combination of kernels to be composed by using Gaussian kernels with different bandwidth scales. In the second stage, the KSVD-MKL classification is used as the initial spectral term classification results. Then, spatial information is modeled by using Conditional Random Field (CRF) observation fields and labels, and the KSVD-MKL classification results are optimized. Experiment results on public Indian pines and Botswana datasets demonstrate that the classification accuracy of the proposed method is effectively improved against existing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱图像分类的两阶段学习算法
由于支持向量机(SVM)在处理高维数据方面的优异性能,它经常被用于高光谱图像(HSI)分类领域。然而,传统的支持向量机方法仅使用单一的Mercer核函数作为基核,不能很好地代表样本的相似性。同时,无法利用空间背景信息增强HSI分类结果。为了解决这些问题,本文提出了一种用于HSI分类的两阶段学习(TSL)算法。首先,针对支持向量机多核学习(MKL),提出了一种新的核奇异值分解-多核学习(KSVD-MKL)方法,利用不同带宽尺度的高斯核组成最佳的核组合;第二阶段使用KSVD-MKL分类作为初始光谱项分类结果。然后利用条件随机场(Conditional Random Field, CRF)观测场和标签对空间信息进行建模,并对KSVD-MKL分类结果进行优化。在印度松树和博茨瓦纳公共数据集上的实验结果表明,与现有算法相比,本文方法的分类精度得到了有效提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1