On the Use of Approximate Multipliers in LMS Adaptive Filters

D. Esposito, G. Meo, D. Caro, N. Petra, E. Napoli, A. Strollo
{"title":"On the Use of Approximate Multipliers in LMS Adaptive Filters","authors":"D. Esposito, G. Meo, D. Caro, N. Petra, E. Napoli, A. Strollo","doi":"10.1109/ISCAS.2018.8351089","DOIUrl":null,"url":null,"abstract":"Approximate computing relaxes algorithm precision constraints to improve digital circuit performance. Adaptive filters based on least-mean-square (LMS) algorithm constitute a standard in many DSP applications. The LMS algorithm, being an approximation of the Wiener filter, is inherently imprecise, and constitutes a fertile ground to employ approximate hardware techniques with the additional challenge related to the presence of a feedback path for coefficients update. In this paper, approximate LMS adaptive filters are explored for the first time, by employing approximate multipliers. A system identification scenario is adopted to assess the algorithm behavior. The analysis reveals that the choice of the approximate multiplier topology should be carefully examined, otherwise the stability and convergence performance of the algorithm can be compromised. We propose a novel approximate multiplier able to reduce the power dissipation in adaptive LMS filters up to 29% with tolerable convergence error degradation.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"54 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Approximate computing relaxes algorithm precision constraints to improve digital circuit performance. Adaptive filters based on least-mean-square (LMS) algorithm constitute a standard in many DSP applications. The LMS algorithm, being an approximation of the Wiener filter, is inherently imprecise, and constitutes a fertile ground to employ approximate hardware techniques with the additional challenge related to the presence of a feedback path for coefficients update. In this paper, approximate LMS adaptive filters are explored for the first time, by employing approximate multipliers. A system identification scenario is adopted to assess the algorithm behavior. The analysis reveals that the choice of the approximate multiplier topology should be carefully examined, otherwise the stability and convergence performance of the algorithm can be compromised. We propose a novel approximate multiplier able to reduce the power dissipation in adaptive LMS filters up to 29% with tolerable convergence error degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
近似乘法器在LMS自适应滤波器中的应用
近似计算放宽了算法精度的限制,提高了数字电路的性能。基于最小均方(LMS)算法的自适应滤波器是许多DSP应用的标准。LMS算法是维纳滤波器的近似值,本质上是不精确的,并且为采用近似硬件技术提供了肥沃的土壤,并且存在与系数更新反馈路径相关的额外挑战。本文首次利用近似乘法器对近似LMS自适应滤波器进行了探索。采用系统识别场景对算法行为进行评估。分析表明,近似乘法器拓扑的选择应慎重考虑,否则会影响算法的稳定性和收敛性能。我们提出了一种新的近似乘法器,能够在可容忍的收敛误差退化下将自适应LMS滤波器的功耗降低到29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1