Decoupled Smoothing on Graphs

Alex J. Chin, Yatong Chen, Kristen M. Altenburger, J. Ugander
{"title":"Decoupled Smoothing on Graphs","authors":"Alex J. Chin, Yatong Chen, Kristen M. Altenburger, J. Ugander","doi":"10.1145/3308558.3313748","DOIUrl":null,"url":null,"abstract":"Graph smoothing methods are an extremely popular family of approaches for semi-supervised learning. The choice of graph used to represent relationships in these learning problems is often a more important decision than the particular algorithm or loss function used, yet this choice is less well-studied in the literature. In this work, we demonstrate that for social networks, the basic friendship graph itself may often not be the appropriate graph for predicting node attributes using graph smoothing. More specifically, standard graph smoothing is designed to harness the social phenomenon of homophily whereby individuals are similar to “the company they keep.” We present a decoupled approach to graph smoothing that decouples notions of “identity” and “preference,” resulting in an alternative social phenomenon of monophily whereby individuals are similar to “the company they're kept in,” as observed in recent empirical work. Our model results in a rigorous extension of the Gaussian Markov Random Field (GMRF) models that underlie graph smoothing, interpretable as smoothing on an appropriate auxiliary graph of weighted or unweighted two-hop relationships.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Graph smoothing methods are an extremely popular family of approaches for semi-supervised learning. The choice of graph used to represent relationships in these learning problems is often a more important decision than the particular algorithm or loss function used, yet this choice is less well-studied in the literature. In this work, we demonstrate that for social networks, the basic friendship graph itself may often not be the appropriate graph for predicting node attributes using graph smoothing. More specifically, standard graph smoothing is designed to harness the social phenomenon of homophily whereby individuals are similar to “the company they keep.” We present a decoupled approach to graph smoothing that decouples notions of “identity” and “preference,” resulting in an alternative social phenomenon of monophily whereby individuals are similar to “the company they're kept in,” as observed in recent empirical work. Our model results in a rigorous extension of the Gaussian Markov Random Field (GMRF) models that underlie graph smoothing, interpretable as smoothing on an appropriate auxiliary graph of weighted or unweighted two-hop relationships.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解耦平滑图
图平滑方法是一类非常流行的半监督学习方法。在这些学习问题中,选择用来表示关系的图通常比使用的特定算法或损失函数更重要,但这种选择在文献中研究得较少。在这项工作中,我们证明了对于社交网络,基本的友谊图本身可能通常不是使用图平滑来预测节点属性的合适图。更具体地说,标准图平滑是为了利用同质性的社会现象,即个人与“他们的同伴”相似。我们提出了一种解耦的方法来平滑图形,解耦了“身份”和“偏好”的概念,从而产生了一种替代的社会现象,即个体与“他们所处的公司”相似,正如最近的实证工作所观察到的那样。我们的模型是高斯马尔可夫随机场(GMRF)模型的严格扩展,该模型是图平滑的基础,可解释为在加权或非加权两跳关系的适当辅助图上的平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1