{"title":"Enhancing Fashion Recommendation with Visual Compatibility Relationship","authors":"Ruiping Yin, Kan Li, Jie Lu, Guangquan Zhang","doi":"10.1145/3308558.3313739","DOIUrl":null,"url":null,"abstract":"With the increasing of online shopping services, fashion recommendation plays an important role in daily online shopping scenes. A lot of recommender systems have been developed with visual information. However, few works take into account compatibility relationship when they are generating recommendations. The challenge is that fashion concept is often subtle and subjective for different customers. In this paper, we propose a fashion compatibility knowledge learning method that incorporates visual compatibility relationships as well as style information. We also propose a fashion recommendation method with domain adaptation strategy to alleviate the distribution gap between the items in target domain and the items of external compatible outfits. Our results indicate that the proposed method is capable of learning visual compatibility knowledge and outperforms all the baselines.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"209 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37
Abstract
With the increasing of online shopping services, fashion recommendation plays an important role in daily online shopping scenes. A lot of recommender systems have been developed with visual information. However, few works take into account compatibility relationship when they are generating recommendations. The challenge is that fashion concept is often subtle and subjective for different customers. In this paper, we propose a fashion compatibility knowledge learning method that incorporates visual compatibility relationships as well as style information. We also propose a fashion recommendation method with domain adaptation strategy to alleviate the distribution gap between the items in target domain and the items of external compatible outfits. Our results indicate that the proposed method is capable of learning visual compatibility knowledge and outperforms all the baselines.