Investigation of underwater discharge plasma with metal vapor admixtures

IF 3.674 4区 工程技术 Q1 Engineering Applied Nanoscience Pub Date : 2023-09-01 DOI:10.1007/s13204-023-02952-w
A. Murmantsev, V. Ninyovskij, A. Veklich, V. Boretskij
{"title":"Investigation of underwater discharge plasma with metal vapor admixtures","authors":"A. Murmantsev,&nbsp;V. Ninyovskij,&nbsp;A. Veklich,&nbsp;V. Boretskij","doi":"10.1007/s13204-023-02952-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the control of input energy and plasma parameters during the electric discharge erosive process for nanoparticle generation. The total energy supplied to the discharge chamber was controlled by varying the switching phase of the thyristor. Electrical parameters, including current and voltage waveforms, were analyzed to estimate the total input energy delivered to the reactor with zinc granules immersed in water. Additionally, the correlation between electrical parameters and plasma characteristics in the underwater discharge plasma with zinc vapors was examined. It was found that decreasing the switching phase increased the total input energy and influenced the electron density and emission intensity of the plasma. A decrease in switching phase within the range of 145–135 degrees resulted in better erosion of zinc material and more efficient generation of nanoparticles in the plasma. These findings contribute to the optimization of nanoparticle synthesis processes.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":null,"pages":null},"PeriodicalIF":3.6740,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-023-02952-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the control of input energy and plasma parameters during the electric discharge erosive process for nanoparticle generation. The total energy supplied to the discharge chamber was controlled by varying the switching phase of the thyristor. Electrical parameters, including current and voltage waveforms, were analyzed to estimate the total input energy delivered to the reactor with zinc granules immersed in water. Additionally, the correlation between electrical parameters and plasma characteristics in the underwater discharge plasma with zinc vapors was examined. It was found that decreasing the switching phase increased the total input energy and influenced the electron density and emission intensity of the plasma. A decrease in switching phase within the range of 145–135 degrees resulted in better erosion of zinc material and more efficient generation of nanoparticles in the plasma. These findings contribute to the optimization of nanoparticle synthesis processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含金属蒸汽混合物的水下放电等离子体研究
本研究探讨了在纳米粒子生成的放电侵蚀过程中对输入能量和等离子体参数的控制。通过改变晶闸管的开关相位来控制提供给放电室的总能量。对包括电流和电压波形在内的电气参数进行了分析,以估算向浸入水中的锌粒反应器输送的总输入能量。此外,还研究了锌蒸汽水下放电等离子体中电气参数和等离子体特性之间的相关性。研究发现,降低开关相位会增加总输入能量,并影响等离子体的电子密度和发射强度。在 145-135 度的范围内降低开关相位可以更好地侵蚀锌材料,并在等离子体中更有效地生成纳米粒子。这些发现有助于优化纳米粒子合成工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Nanoscience
Applied Nanoscience Materials Science-Materials Science (miscellaneous)
CiteScore
7.10
自引率
0.00%
发文量
430
期刊介绍: Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.
期刊最新文献
Exploring mechanical, wear, and corrosion characteristics of Al–Si–Mg nano-composites reinforced with nano-silicon dioxide and tungsten carbide Agro-environmental influence and interaction of nanoparticles (CuO, Fe3O4, Fe3O4@CuO) on microorganisms causing illnesses of tomato root and stems Environmental protection and performance enhancement of hydrocarbon compressor based vapour compression refrigeration system using dry powder SiO2 nanoparticles: an experimental analysis Antimicrobial silver nanoparticles derived from Synadenium glaucescens exhibit significant ecotoxicological impact in waste stabilization ponds ZnO mesoscale nanoparticles photoluminescence obtained by green synthesis based on Beaucarnea gracilis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1