TemProRA: Top-k temporal-probabilistic results analysis

K. Papaioannou, Michael H. Böhlen
{"title":"TemProRA: Top-k temporal-probabilistic results analysis","authors":"K. Papaioannou, Michael H. Böhlen","doi":"10.1109/ICDE.2016.7498350","DOIUrl":null,"url":null,"abstract":"The study of time and probability, as two combined dimensions in database systems, has focused on the correct and efficient computation of the probabilities and time intervals. However, there is a lack of analytical information that allows users to understand and tune the probability of time-varying result tuples. In this demonstration, we present TemProRA, a system that focuses on the analysis of the top-k temporal probabilistic results of a query. We propose the Temporal Probabilistic Lineage Tree (TPLT), the Temporal Probabilistic Bubble Chart (TPBC) and the Temporal Probabilistic Column Chart (TPCC): for each output tuple these three tools are created to provide the user with the most important information to systematically modify the time-varying probability of result tuples. The effectiveness and usefulness of TemProRA are demonstrated through queries performed on a dataset created based on data from Migros, the leading Swiss supermarket branch.","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"23 1","pages":"1382-1385"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2016.7498350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The study of time and probability, as two combined dimensions in database systems, has focused on the correct and efficient computation of the probabilities and time intervals. However, there is a lack of analytical information that allows users to understand and tune the probability of time-varying result tuples. In this demonstration, we present TemProRA, a system that focuses on the analysis of the top-k temporal probabilistic results of a query. We propose the Temporal Probabilistic Lineage Tree (TPLT), the Temporal Probabilistic Bubble Chart (TPBC) and the Temporal Probabilistic Column Chart (TPCC): for each output tuple these three tools are created to provide the user with the most important information to systematically modify the time-varying probability of result tuples. The effectiveness and usefulness of TemProRA are demonstrated through queries performed on a dataset created based on data from Migros, the leading Swiss supermarket branch.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
temproora: Top-k时间概率结果分析
时间和概率作为数据库系统的两个组合维度,其研究的重点是如何正确有效地计算概率和时间间隔。但是,缺乏允许用户理解和调优时变结果元组的概率的分析信息。在这个演示中,我们介绍了temproora,一个专注于分析查询的top-k时间概率结果的系统。我们提出了时间概率谱系树(TPLT),时间概率气泡图(TPBC)和时间概率柱图(TPCC):为每个输出元组创建这三个工具,为用户提供最重要的信息,以系统地修改结果元组的时变概率。temproora的有效性和实用性通过对基于Migros(瑞士领先的超市分支)数据创建的数据集进行查询来证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1