Data profiling

Ziawasch Abedjan, Lukasz Golab, Felix Naumann
{"title":"Data profiling","authors":"Ziawasch Abedjan, Lukasz Golab, Felix Naumann","doi":"10.1145/3035918.3054772","DOIUrl":null,"url":null,"abstract":"One of the crucial requirements before consuming datasets for any application is to understand the dataset at hand and its metadata. The process of metadata discovery is known as data profiling. Profiling activities range from ad-hoc approaches, such as eye-balling random subsets of the data or formulating aggregation queries, to systematic inference of structural information and statistics of a dataset using dedicated profiling tools. In this tutorial, we highlight the importance of data profiling as part of any data-related use-case, and discuss the area of data profiling by classifying data profiling tasks and reviewing the state-of-the-art data profiling systems and techniques. In particular, we discuss hard problems in data profiling, such as algorithms for dependency discovery and profiling algorithms for dynamic data and streams. We conclude with directions for future research in the area of data profiling. This tutorial is based on our survey on profiling relational data [1].","PeriodicalId":6883,"journal":{"name":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","volume":"67 1","pages":"1432-1435"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 32nd International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3035918.3054772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

One of the crucial requirements before consuming datasets for any application is to understand the dataset at hand and its metadata. The process of metadata discovery is known as data profiling. Profiling activities range from ad-hoc approaches, such as eye-balling random subsets of the data or formulating aggregation queries, to systematic inference of structural information and statistics of a dataset using dedicated profiling tools. In this tutorial, we highlight the importance of data profiling as part of any data-related use-case, and discuss the area of data profiling by classifying data profiling tasks and reviewing the state-of-the-art data profiling systems and techniques. In particular, we discuss hard problems in data profiling, such as algorithms for dependency discovery and profiling algorithms for dynamic data and streams. We conclude with directions for future research in the area of data profiling. This tutorial is based on our survey on profiling relational data [1].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据概要分析
对于任何应用程序,在使用数据集之前的一个关键要求是了解手头的数据集及其元数据。元数据发现的过程称为数据分析。分析活动的范围从特别的方法,比如对数据的随机子集进行观察或制定聚合查询,到使用专用分析工具对数据集的结构信息和统计进行系统推断。在本教程中,我们将强调数据分析作为任何与数据相关的用例的一部分的重要性,并通过分类数据分析任务和回顾最新的数据分析系统和技术来讨论数据分析领域。特别地,我们讨论了数据分析中的难题,例如依赖项发现算法和动态数据和流的分析算法。最后,我们对数据分析领域的未来研究方向进行了总结。本教程基于我们对分析关系数据[1]的调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data profiling SEED: A system for entity exploration and debugging in large-scale knowledge graphs TemProRA: Top-k temporal-probabilistic results analysis Durable graph pattern queries on historical graphs SCouT: Scalable coupled matrix-tensor factorization - algorithm and discoveries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1