MD-HM: memoization-based molecular dynamics simulations on big memory system

Zhen Xie, Wenqian Dong, Jie Liu, I. Peng, Yanbao Ma, Dong Li
{"title":"MD-HM: memoization-based molecular dynamics simulations on big memory system","authors":"Zhen Xie, Wenqian Dong, Jie Liu, I. Peng, Yanbao Ma, Dong Li","doi":"10.1145/3447818.3460365","DOIUrl":null,"url":null,"abstract":"Molecular dynamics (MD) simulation is a fundamental method for modeling ensembles of particles. In this paper, we introduce a new method to improve the performance of MD by leveraging the emerging TB-scale big memory system. In particular, we trade memory capacity for computation capability to improve MD performance by the lookup table-based memoization technique. The traditional memoization technique for the MD simulation uses relatively small DRAM, bases on a suboptimal data structure, and replaces pair-wise computation, which leads to limited performance benefit in the big memory system. We introduce MD-HM, a memoization-based MD simulation framework customized for the big memory system. MD-HM partitions the simulation field into subgrids, and replaces computation in each subgrid as a whole based on a lightweight pattern-match algorithm to recognize computation in the subgrid. MD-HM uses a new two-phase LSM-tree to optimize read/write performance. Evaluating with nine MD simulations, we show that MD-HM outperforms the state-of-the-art LAMMPS simulation framework with an average speedup of 7.6x based on the Intel Optane-based big memory system.","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447818.3460365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Molecular dynamics (MD) simulation is a fundamental method for modeling ensembles of particles. In this paper, we introduce a new method to improve the performance of MD by leveraging the emerging TB-scale big memory system. In particular, we trade memory capacity for computation capability to improve MD performance by the lookup table-based memoization technique. The traditional memoization technique for the MD simulation uses relatively small DRAM, bases on a suboptimal data structure, and replaces pair-wise computation, which leads to limited performance benefit in the big memory system. We introduce MD-HM, a memoization-based MD simulation framework customized for the big memory system. MD-HM partitions the simulation field into subgrids, and replaces computation in each subgrid as a whole based on a lightweight pattern-match algorithm to recognize computation in the subgrid. MD-HM uses a new two-phase LSM-tree to optimize read/write performance. Evaluating with nine MD simulations, we show that MD-HM outperforms the state-of-the-art LAMMPS simulation framework with an average speedup of 7.6x based on the Intel Optane-based big memory system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于记忆的大内存系统分子动力学模拟
分子动力学(MD)模拟是模拟粒子系综的基本方法。在本文中,我们介绍了一种利用新兴的tb级大存储系统来提高MD性能的新方法。特别是,我们用内存容量换取计算能力,通过基于查找表的记忆技术来提高MD的性能。传统的记忆技术用于MD模拟使用相对较小的DRAM,基于次优数据结构,并取代成对计算,这导致大内存系统的性能优势有限。我们介绍了MD- hm,一个为大存储系统定制的基于记忆的MD仿真框架。MD-HM将仿真场划分为子网格,并基于轻量级模式匹配算法将每个子网格中的计算作为一个整体替换,以识别子网格中的计算。MD-HM使用新的两阶段lsm树来优化读/写性能。通过9次MD模拟评估,我们发现MD- hm在基于Intel optane的大内存系统上的平均加速速度为7.6倍,优于最先进的LAMMPS模拟框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating BWA-MEM Read Mapping on GPUs. Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. Priority Algorithms with Advice for Disjoint Path Allocation Problems From Data of Internet of Things to Domain Knowledge: A Case Study of Exploration in Smart Agriculture On Two Variants of Induced Matchings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1